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Abstract. The automatic semantic similarity assessment field has attracted much attention due to its impact on multiple areas of
study. In addition, it is also relevant that recent advances in neural computation have taken the solutions to a higher stage. How-
ever, some inherent problems persist. For example, large amounts of data are still needed to train solutions, the interpretability
of the trained models is not the most suitable one, and the energy consumption required to create the models seems out of con-
trol. Therefore, we propose a novel method to achieve significant results for a sustainable semantic similarity assessment, where
accuracy, interpretability, and energy efficiency are equally important. We rely on a method based on multi-objective symbolic
regression to generate a Pareto front of compromise solutions. After analyzing the output generated and comparing other relevant
works published, our approach’s results seem to be promising.
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1. Introduction

Determining semantic similarity between pieces of
text is a significant challenge for the scientific commu-
nity since the results achieved in this domain can im-
pact a wide range of disciplines, including retrieving
information of a textual nature. As a result, numerous
solutions have been proposed to address the problem.
Among them, recent advances in the abstract represen-
tation of words and sentences achieved by BERT [9]
and ELMo [43] stand out. These approaches and their
different variants have achieved remarkable results in
several competitions. However, some inherent draw-
backs are often overlooked.

For example, these approaches need vast data to
be adequately trained. Furthermore, while it is usu-
ally not difficult for general-purpose solutions to find
large amounts of data, it is often a problem in much
more restricted domains. In addition, these solutions
are hardly interpretable. This means that a human op-
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erator can provide input and obtain an output. Never-
theless, it is impossible to explain how the model has
produced this output. Although it may not seem so, this
leads to problems of a legal and ethical nature and vari-
ous practical issues. Since people are not likely to trust
systems that they cannot fully understand. Therefore,
this is a very limiting factor of this kind of solution.

Last but not least, the latest advances in neural com-
putation require significant investments in hardware
with very high associated energy consumption to de-
ploy the models. Despite the efforts to date, no suf-
ficiently good alternatives to the problem have been
found. Therefore, motivated by the reasons mentioned
above, our research focuses on developing a more sus-
tainable solution.

Remark 1. Research Gap. Though semantic sim-
ilarity assessment through computers is currently at-
tracting attention, the community has remained indif-
ferent towards the interpretability of the resulting mod-
els and the energy efficiency required to build and ex-
ploit the resulting solutions. In this context, deep neu-
ral networks have been effectively used to produce
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highly accurate assessment methods, but there are sev-
eral issues inherent to the neural nature of these so-
lutions. The challenge of establishing the ideal model
structure, the demand for extensive training datasets,
and the time-consuming nature of numerical learning
methods are all issues with these deep neural network
models. The state-of-art misses the study of alternative
approaches to overcome these problems.

Remark 2. Motivation. The motivation of this re-
search work is to build semantic similarity assessment
methods that are accurate, interpretable, and energy-
efficient at the same time. There have been signifi-
cant attempts to address these issues, but always in a
separate form. While it is true that existing solutions
achieve very high accuracy, this is often at the ex-
pense of vast amounts of data for training. In addition,
some work is already beginning to highlight the need
to improve the interpretability of neural solutions [37].
However, more efforts are still needed in this direction.
Last but not least, there are ways to reduce energy con-
sumption, for example, by designing hardware (e.g.,
processors, memory, disks) so that running software
consumes less energy. Other branch tries using mech-
anisms for scheduling instructions to make them more
efficient. However, alternative strategies for creating
energy-efficient code from scratch remain largely un-
explored in this domain.

Remark 3. Contributions. Given Remarks 1 and 2,
it can be established that the two most significant sci-
entific and technical contributions to the state-of-the-
art of the current approach could be summarized as
follows:

1. C1. We propose a novel strategy for seman-
tic similarity that consists of developing algo-
rithms designed to be accurate, interpretable,
and energy-efficient from the beginning. We rely
on symbolic regression and multi-objective opti-
mization (MOO). Through symbolic regression,
we create models capable of evolving towards
accuracy, interpretability, and energy efficiency
smartly, and using MOO techniques, we force
our approach to be guided by optimizing each of
these orthogonal objectives simultaneously.

2. C2. We evaluate this novel strategy for pro-
gram synthesis using widely accepted bench-
mark datasets used for the assessment of seman-
tic similarity and compare the results obtained
to the state-of-the-art solutions. Since, as far as
we are concerned, this is the first attempt to use
such kind of strategy to meet the three objec-

tives mentioned above simultaneously, we aim to
segment the different comparisons with the other
well-known approaches to determine if the strat-
egy presented here is competitive in each of the
addressed aspects separately.

This manuscript is structured as follows: Section 2
describes the state-of-the-art concerning methods and
tools for automatic semantic similarity assessment us-
ing computers. Section 3 presents the foundations that
explain our sustainable semantic similarity measure-
ment approach. Section 4 reports the findings extracted
from several experiments, including using the most
popular benchmark datasets in this context, and we
compare these results with those obtained by other
approaches. Finally, we remark on the strengths and
flaws of our proposal and discuss the future work in
Section 5.

2. State-of-the-art

It is widely assumed that automatically evaluating
the semantic similarity between pieces of textual infor-
mation is a complex research problem that requires a
multidisciplinary approach to address it. Nevertheless,
because of its importance to industry and academia,
this challenge has attracted much attention recently
[2,6,46]. The rationale for this is that models that
can accurately identify the semantic similarity between
two pieces of text could open up new ways to impact
such diverse sectors as basic research or the business
world.

The scientific community has long aspired to auto-
matically determine the semantic similarity of textual
fragments reflecting the same real-world thing or idea,
even if their lexicography differs. For many years, se-
mantic similarity methods have been used in many
computer-related fields [6]. Even today, a substantial
and expanding corpus of academic study based on a
variety of techniques exists [14,27,28,42,50]. In recent
years, new neural embedding approaches have gained
much traction [39]. To such an extent that today, these
seminal works have inspired state-of-the-art solutions
such as BERT [9] or ELMo [43]. However, three main
issues persist:

1. The first issue is that these techniques rely on
large amounts of data to train models. Whether
developed or detected using pre-trained deep
models, the input features may be impacted by
noise inherent in raw data, making them impre-
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cise. In addition, the mappings between data fea-
tures and objective variables must be robust to
data noise and other factors such as outliers and
the adoption of a non-optimal model structure.
We have discussed the use of semantic similar-
ity controllers in the past as a way to solve these
challenges [36]. These controllers are artifacts
that may be developed automatically to avoid
the issues we discussed before. However, under-
standing fuzzy code still needs a certain degree
of mastery.

2. The second issue is the lack of interpretabil-
ity, i.e., the inability of a human operator to
understand the model. This is a characteristic
since understanding a model with many inter-
connected nodes is widely considered rather dif-
ficult. The reason is that a human operator can
specify which outputs correlate to which inputs
and the deep neural network will automatically
design a mapping function. However, the human
operator will not know what happens inside the
model. As a result, these models are often de-
scribed as black-boxes because they do not show
their operation insights to the users. Although in
recent times much research is indeed being car-
ried out to mitigate this problem [45], the solu-
tions are not yet entirely satisfactory.

3. The third issue is that energy saving is one of
the major concerns in today’s societies. It is rel-
evant to note here that data centers worldwide
consume more than 320 terawatt-hours of elec-
tricity currently, which is more than 3% of the
world’s total electricity consumption1. Data cen-
ters assume that facility expenses have become
significant cost factors. Moreover, highest energy
impact of deep learning models is not just be-
cause of their training but rather because of their
deployment in the cloud, being continuously on-
line, making computations in real-time for thou-
sands or millions of parameters. These reasons
explain that the engineers in charge of maintain-
ing these centers strongly warn that if energy
consumption continues to grow, the expenses of
the model’s life cycle may exceed the cost re-
lated to the hardware by a wide margin, not to
mention its environmental impact (e.g., carbon
footprint). Some works have tried to improve our
understanding of the consumption patterns of a

1https://ukcop26.org/

program for writing sustainable, energy-efficient,
and green code [1,32]. Now, we go a step further
since one of the advantages of symbolic regres-
sion is that it can reduce software energy con-
sumption by optimizing the source code.

Therefore, to date, very little attention has been paid
to the sustainability of the models [13]. The novelty of
this work lies in that we present a strategy for building
more sustainable semantic similarity assessment sys-
tems for the first time. We emphasize the importance of
facing a threefold goal: to make the models accurate,
interpretable, and energy-efficient at the same time.
Furthermore, we will rely on symbolic regression and
MOO techniques to build our system. This approach is
innovative in that it:

The challenge of finding a symbolic expression to
identify the relationship between defined inputs and
output variables has already been studied by the com-
munity. The key idea is that the expressions gener-
ated should be flexible enough without being restricted
to a particular structure [47]. This technique is con-
strained by the choice of operations that are permitted
in the sought equations [20]. Nevertheless, the result-
ing model is an equation that can be executed and in-
terpreted in the context of the situation [37].

Concerning multi-objective symbolic regression,
several works have appeared in recent times that ad-
dress the problem [24,30]. Such techniques, as [16],
aim to model problems involving conflicting objec-
tives in the classical ways. Although there are some
improvements, e.g., using semantic genetic program-
ming [5], its applications have been little explored to
date. In this work’s context, we focus on combining
symbolic regression with MOO, allowing us to shape
our model in the way we need, for the first time.

In summary, neither the interpretability of seman-
tic similarity measurement nor generating energy-
efficient models have yet been explored in depth.
Therefore, in the remainder of this work, we will fo-
cus on developing sustainable methods for automati-
cally assessing semantic similarity between pieces of
textual information. To do that, we aim to reach sus-
tainability using a MOO similarity learning problem
whereby three orthogonal objectives (accuracy, inter-
pretability, and energy efficiency) are to be pursued
simultaneously.
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3. Sustainable Semantic Similarity Assessment

To face the challenge of designing more sustainable
methods for semantic similarity assessment, we aim to
combine symbolic regression, performed via genetic
programming (GP), with MOO techniques. Symbolic
regression explores the space search of all computer
programs to find the one that best solves a given prob-
lem. No particular assumption is made as a starting
point. This characteristic gives us enormous advan-
tages in designing highly efficient approaches from the
beginning. This approach takes nothing for granted, so
the method is free to evolve to forms with high ac-
curacy, interpretability, and low energy consumption.
This is whereby MOO comes in since this approach
involves more than one goal to be simultaneously met.
MOO is helpful in scenarios where decisions need to
be taken regarding two or more orthogonal objectives.

We can define our problem formally as follows:
KO : Rp → R that best fits a given training dataset
T = {(x1, y1), . . . , (xn, yn)} of n input and output
pairs with xi ∈ Rp, yi ∈ R defined as

KO, θO ← argmin
K∈G;θ∈Rm

f(K(xi, θ), yi) (1)

where G is the solution or solution space defined by
the primitive set P of functions and terminals, f is the
fitness function which is based on the difference be-
tween the model output K(xi, θ). The desired output
yi, and θ is a particular parametrization of the mathe-
matical expression K, assuming m are real-valued.

Furthermore, research problems with two or more
orthogonal objectives have received much attention
in recent decades. In this way, meta-heuristics have
successfully addressed MOO problems, resulting in
numerous techniques that offer an accurate approxi-
mation to the Pareto front of the solved issue. The
decision-maker must next determine which alterna-
tives are the most appropriate based on a set of crite-
ria or preferences. We will also study which kind of
meta-heuristic strategy best fits the problem.

3.1. Importance of Symbolic Regression

Symbolic regression is a computational approach
that explores extensively across the space in which all
equations are specified to discover the formula that
best matches a specific dataset. Symbolic regression
has already been applied previously in [15]. The au-

thors proposed a method to solve specific problems as-
sociated with the identification and learning functions
in that work. This application is possible thanks to Ab-
stract Syntax Trees (ASTs), which allow identifying
any function from past solves cases. This makes it eas-
ier for a human operator to grasp it and apply it to other
issues of a similar kind [37].

Our aim is for the AST to grow to the point where it
can find an expression that matches the input and out-
put pairs supplied as training data and then validates
that expression in a different situation. In each itera-
tion, all candidates in the population are evaluated for
how well they satisfy the objective. Those with higher
scores are more likely to pass on to the next iteration.
By introducing sources of random variation in each
candidate solution, new candidates are generated, each
with a possibility of being closer to the actual target
solution.

To do that, we seek to aggregate modern similarity
techniques strategically. The possible mistakes that a
method could make lose importance on an ensemble
of techniques that generally blur any of these mistakes
[35]. In this way, only if all methods produce the same
error does the aggregation lose its usefulness. Popular
operations in this field are the arithmetical mean or the
median. However, their strategy is widely considered
to be short-sighted and does not usually lead to optimal
results in this context [33].

Therefore, we combine methods with mathematical
operators and numerical constants to get the goal func-
tion. As mentioned in [25], this model may evolve ow-
ing to an evolutionary algorithm. The result is obtained
by assessing the nodes and then applying the parent
operation to the children [37]. Our research leads to
three interesting facts: first, the symbolic regression
can find an expression that can adequately consider
each of the measures of semantic similarity; second,
in contrast to other neural network-based models, the
generated expression can be recognized and under-
stood by a human being without requiring any special
training; and third, the energy consumption of the ex-
pression, although we can assume it is not very impor-
tant for a single run, could be optimized to see a posi-
tive effect after millions of repeated executions.

In our strategy, the automatic generation of the AST
must be guided by the three aforementioned main ob-
jectives. The problem is that, in the realm of MOO,
there is not a single solution that can meet all of the
goals at the same time. As a result, solutions that can-
not improve the objectives without harming the re-
mainder must be prioritized. In this way, the collection
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of Pareto optimum points from the search space leads
to a Pareto front, representing the best feasible com-
promise between the examined orthogonal objectives
[38]. In our specific case, the three orthogonal objec-
tives that define our learning phase are the following:

– Concerning accuracy, we try to maximize the
Pearson or the Spearman Rank correlation coeffi-
cients since the research community usually mea-
sures semantic similarity as the difference in the
correlation of human judgment (or ground truth)
and artificially generated solutions. Therefore, the
unit of measurement will be the degree of corre-
lation with human judgment.

– Concerning interpretability, we try to minimize
the size and the complexity of the final mathemat-
ical equation generated by the evolutionary strat-
egy. To do so, we will work with individuals of a
specific maximum size to reduce them as much as
possible. Therefore, the unit of measurement will
be the length of the generated mathematical equa-
tion, taking into account that the size is measured
in the number of nodes.

– Concerning energy efficiency, we try to minimize
the energy consumption. To do that, we use the
pyRAPL2 model to calculate the energy required
by the execution of the symbolic program at run-
time. This model is valid only on Intel CPUs (it
remains future work to study other processors).
The unit of measurement will be the Joule since
it represents the energy dissipated as heat in the
CPU.

Figure 1 shows a clear example of the solutions we
are looking for. We want a three-dimensional solu-
tion Pareto front, where a human operator can choose
the solution that best fits his specific needs. Since the
three parameters are challenging to optimize simulta-
neously, choosing a solution that optimizes two will al-
most always be possible—for example, accuracy and
interpretability, accuracy and energy efficiency, or in-
terpretability and energy efficiency.

From now on, we will explain the details of the em-
pirical study for the sustainable calculation of seman-
tic similarity. In addition, we will provide an analysis
of the applicability of this novel strategy to production
environments.

2https://github.com/powerapi-ng/pyRAPL
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Fig. 1. Three-dimensional visualization of the front-end Pareto gen-
erated when learning an equation that optimizes accuracy, inter-
pretability and energy efficiency at the same time. The X-axis rep-
resents the energy consumption in Joules. The Y-axis represents the
interpretability in AST items, or if preferred, the size of the resulting
model or mathematical equation. The Z-axis expresses the degree of
correlation with respect to human judgment.

4. Results

The outcomes we got in our experiments are pre-
sented here. To accomplish so, we outline our ex-
perimental strategy setup, including the benchmark
datasets we have used, the different objectives to be
reached, and the base configuration of the approaches
under consideration. We thoroughly examine the var-
ious MOO techniques explored and the empirical re-
sults. Furthermore, we provide a comparison with pre-
vious studies, including those that emphasize accuracy.
We also offer a temporal analysis of the different train-
ing phases for the approaches under consideration and
discuss the outcomes obtained.

4.1. Experimental setup

First, we will go through the benchmark datasets
that we have utilized, the objective functions our strat-
egy should aim towards, and finally, the base setup we
used in the test we performed, ensuring that the exper-
iments are repeatable.

4.1.1. Datasets
Our research uses a dataset that has become stan-

dard for working with general-purpose solutions. The
dataset is known as the Miller & Charles [40] dataset.
This benchmark compares textual information from
various general-purpose contexts, i.e., terms we can
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find in many traditional settings. We use the version
with 30-word pairs (MC30), while many researchers
utilize shorter versions (e.g., 28-word pairs) due to
problems concerning dictionary coverage.

4.1.2. Goals
The fitness function guides the learning process

through the Spearman Rank correlation and Pearson
Correlation Coefficient. This last one is calculated be-
tween two vectors and aims to assess the linear rela-
tionship between both vectors. On the other hand, if
the Spearman Rank correlation is used, a coefficient
to measure how equals the vectors generated by the
human and the machine. The correlation defined by
Spearman is a reasonable goal when results need to
be compared on an ordinal base. The distinction be-
tween these two correlations is that Pearson’s corre-
lation is better for situations with an absolute scale,
while Spearman’s correlation works better with rela-
tive scales.

4.1.3. Parameter setup
A standard grid search strategy has made us choose

the following parameter settings:

– Set of functions {+,−, ·, exp, /,max,min} (where
division is protected)

– Individual sizes [0 - 50]: 22
– Highest number of constants permitted [0 - 5]: 3
– Maximum allowed depth [2 - 5]: 4
– Population length [10 - 100]: 25
– Mutation percentage [0.00 - 0.5]: 0.15
– Crossover percentage [0.3 - 0.95]: 0.70

The optimization of values guides the learning pro-
cess in the training phase. Because the approaches we
use are of stochastic nature, this procedure has been
repeated 30 times so that it can be possible to achieve
more robust results.

4.2. Analysis of strategies

MOO aims to learn a function that meets several or-
thogonal objectives simultaneously. There is no sin-
gle optimal solution for problems of this kind. There-
fore, according to the state-of-the-art in the area, our
proposed approach is compared concerning five of the
most representative strategies within the MOO do-
main. Furthermore, we have made such a selection
based on the explanations of [11]. In our scenario, we
want to reduce the energy used and the size of the gen-
erated equation while also increasing the correlation to
human judgment (accuracy). In addition, it is helpful

to emphasize one crucial point: our technique serves
as a guide for achieving the best feasible outcome on
a training dataset. However, the findings that we de-
scribe were obtained using a blind data set. This is ap-
propriate to ensure that the final model has learned a
correct setup for generalizing the results.

Concerning the different MOO strategies, we rely
on the framework MOEA3. The different strategies,
in alphabetical order, are: CellDE [10], CMAES [19],
DBEA [22], GDE3 [26], MOEA/D[48], MSOPS [18],
NSGA-II [7], NSGA-III [8], PAES [23], and SMPSO
[41]. After a preliminary study, we show the five most
promising (in terms of quantity and quality of the solu-
tions) ones below: CellDE [10], CMAES [19], GDE3
[26], MOEA/D [48], and NSGA-II[7].

4.2.1. CellDE
CellDE [10] is a popular approach in the field of

MOO. It obtains outstanding results for several rea-
sons: it relies on efficient differential evolution and
takes the idea of storing non-dominated solutions from
other MOO approaches. These two design features
give the strategy outstanding results in scenarios in-
volving more than two orthogonal objectives.

We can see that it is feasible to gain more accuracy
by using more sophisticated models, as demonstrated
in Figure 2. It can also be shown that more energy is
necessary to make the generated equation more inter-
pretable (i.e., less complex).

4.2.2. CMAES
CMA-ES [19] is a stochastic approach that is usu-

ally involved in the optimization of non-convex con-
tinuous problems. Its design is supported by two ideas:
the core notion of maximum likelihood and the analy-
sis of evolution records, which are used to monitor the
correlation between consecutive iterations.

A solution front is shown in Figure 3, where a more
straightforward way to comprehend the model is ac-
quired at the expense of accuracy and vice versa. Fur-
thermore, there is a substantial divergence between the
Pearson correlation coefficient and the Spearman rank
correlation.

4.2.3. GDE3
GDE3 [26] employs differential evolution to opti-

mize a problem by keeping a population of candidates
and merging current individuals using a simple for-
mula to create new candidate solutions. Differential

3http://moeaframework.org/
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Fig. 2. CellDE was used to create a Pareto front of non-dominated
points. The Pearson Correlation Coefficient is depicted in the first
plot, while the Spearman Rank Correlation is depicted in the second.

evolution methods are simple, efficient, and frequently
produce good results in different MOO settings.

When we look at the experiments, we can see that
GDE3 is one of the more successful ways to proceed.
The results that GDE can produce for the two correla-
tion coefficients of interest are shown in Figure 4.

4.2.4. MOEA/D
MOEA/D [48] is an evolutionary approach that re-

lies on the concept of dividing the scene into several
single-objective problems. MOEA/D usually performs
better with MOO problems involving more than three
conflicting objectives.

We have got a solution front for the two scenar-
ios under study, as shown in Figure 5. The orthogo-
nality explains the relationship between accuracy, the
complexity of the equation required for the technique,
and energy usage. The Spearman values are somewhat
higher than the Pearson values in terms of accuracy.

4.2.5. NSGA-II
When the goals number is modest, NSGA-II [7] is a

popular way to implement a MOO strategy. The algo-
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Fig. 3. CMAES was used to create a Pareto front of non-dominated
points. The Pearson Correlation Coefficient is depicted in the first
plot, while the Spearman Rank Correlation is depicted in the second.

rithm employs the critical notion of dominance to pro-
vide better results than others since it enhances a single
target without degrading others.

In general, NSGA-II-based methods provide good
results. In both circumstances, this method comes out
on top. This is because this method has been demon-
strated to function well when several objectives are be-
ing pursued simultaneously. The outcomes of employ-
ing the NSGA-II approach are shown in Figure 6.

4.3. Comparison with other approaches

The best solutions found utilizing the various MOO
techniques are compared here. It is not possible to
directly compare our technique to any other existing
proposal since it is the first to investigate the trade-
off between accuracy, interpretability, and energy ef-
ficiency when measuring semantic similarity. Conse-
quently, we will evaluate the findings for each factor
studied about the wide range of available methods for
automatically calculating semantic similarity.
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Fig. 4. GDE3 was used to create a Pareto front of non-dominated
points. The Pearson Correlation Coefficient is depicted in the first
plot, while the Spearman Rank Correlation is depicted in the second.

In Table 2 the values for the Pearson Correlation
are compared when solving the MC30 instance. Please
note that in that table are shown the best findings from
our empirical analysis. Even though the outcomes are
contingent on how the model is trained, we can see
that some configurations can produce superior results
than those achieved using traditional approaches. Once
again, we choose the average value because we deal
with non-deterministic methods.

The best results achieved while solving the MC30
dataset with the Spearman Correlation coefficient are
listed in Table 3. We provide the state-of-the-art and
the top outcomes obtained using our method. As can
be shown, some combinations can produce superior re-
sults than those produced using traditional approaches.
There is, however, greater variety than in the prior situ-
ation. Furthermore, the complexity of the equation and
the amount of energy consumed are also considered.

We can observe that our approach can place differ-
ent configurations among the best ones for the MC30
benchmark dataset, which represents a good result
if we also consider that the model’s interpretability
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Fig. 5. MOEA/D was used to create a Pareto front of non-dominated
points. The Pearson Correlation Coefficient is depicted in the first
plot, while the Spearman Rank Correlation is depicted in the second.

Algorithm Score (p-value) Interpretable? Energy-Efficient?

Huang et al. [17] 0.659 (7.5 · 10−5) Yes No
Resnik [44] 0.780 ( 1.9 · 10−7) Yes No

Leacock & Chodorow [29] 0.807 (4.0 · 10−8) Yes No
Lin [31] 0.810 (3.0 · 10−8) Yes No

Faruqui & Dyer [12] 0.817 (2.2 · 10−8) No No
Mikolov et al. [39] 0.820 (2.0 · 10−8) No No

GDE3 0.831 (1.4 · 10−8) Yes Yes
CoTO [34] 0.850 (1.0 · 10−8) Yes No
MOEAD 0.851 (1.0 · 10−8) Yes Yes
FLC [36] 0.855 (1.0 · 10−8) Yes No
CellDE 0.862 (8.5 · 10−9) Yes Yes
CMAES 0.906 (3.2 · 10−9) Yes Yes
NSGA-II 0.914 (2.5 · 10−9) Yes Yes

Table 1
Correlation according to the Pearson for the existing approaches
when the MC30 dataset is tested

and its energy consumption, have been considered to
achieve this score. This confirms our hypothesis that
such a strategy can make sense when solving chal-
lenges such as the one studied here.
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Fig. 6. NSGA-II was used to create a Pareto front of non-dominated
points. The Pearson Correlation Coefficient is depicted in the first
plot, while the Spearman Rank Correlation is depicted in the second.

Algorithm Score(p-value) Interpretable? Energy-Efficient?

Lin [31] 0.619 (1.6 · 10−4) Yes No
Aouicha et al. [3] 0.640 (8.0 · 10−5) Yes No

CMAES 0.686 (2.1 · 10−5) Yes Yes
Resnik [44] 0.757 (5.3 · 10−7) Yes No

Mikolov et al. [39] 0.770 (2.6 · 10−7) No No
CellDE 0.779(1.1 · 10−7) Yes Yes

Leacock & Chodorow [29] 0.789 (8.1 · 10−8) Yes No
Bojanowski et al. [4] 0.846 (6.3 · 10−9) Yes No

Zhao et al. [49] 0.857 (1.4 · 10−9) Yes No
FLC [36] 0.891 (8.3 · 10−12) Yes No

GDE3 0.893 (1.1 · 10−14) Yes Yes
MOEAD 0.903 (1.9 · 10−14) Yes Yes
NSGA-II 0.906 (2.1 · 10−14) Yes Yes

Table 2
Correlation according to the Spearman Rank for the existing ap-
proaches when the MC30 dataset is tested

4.4. Performance

We also analyze the performance for the training
phase. In Figure 7, we show the average time for each
of the MOO strategies considered. These times repre-
sent the average time (in milliseconds) resulting from
30 independent runs.

On the one hand, the MOEA/D method is the fastest
approach. However, the this approach does not rank
among the top. On the other hand, techniques that pro-
duce superior results, such as NSGA-II, need higher
operation times to achieve the Pareto fronts.

4.5. Discussion

Experiments prove that it is feasible to find a so-
lution whose accuracy, interpretability, and energy-
efficient values cannot be improved except at the ex-
pense of the others. However, by studying the results
separately, one can observe that it is possible to op-
timize two values at the cost of the other. There may
be accurate and interpretable solutions, but they will
require more CPU time to execute (think, for exam-
ple, the max operator that requires much computation
underneath even though it only occupies one item of
the AST). There may be accurate and energy-efficient
solutions but not interpretable (since they need large
equations). Finally, there may be interpretable and
energy-efficient solutions but will not be accurate (they
will be executed quickly and cheaply but will not
achieve the best results). These results are novel in that,
to date, the community has not been very concerned
about the development of solutions that give rise to
sustainable models.

Regarding accuracy, it is necessary to remark, that
additional experiments show us that performance de-
creases as the size of the input data increases. But this
is true for all existing models that work with seman-
tic similarity [28]. The reason is that it is necessary to
learn more general models that deal with much more
volume and diversity in the data to be processed.

Regarding a concrete example of interpretability, the
AST4 MAX (MAX (ssm3 · ssm2, 2 · ssm1 + ssm2),
ssm4/ssm3) achieves an accuracy of 0.87 when solv-
ing the MC30. This AST requires 13 nodes (and 4
free variables). At the same time, the AST MAX (MAX
(ssm3 · ssm2, 2 · ssm1 + ssm2), 1) achieves an accu-
racy of 0.83 with 11 nodes (and 3 free variables). It
is therefore up to the human operator to choose the
model to be exploited: More accuracy with more com-
plex equations (larger size and more free variables) or
less accuracy with simpler equations (smaller size and
fewer free variables).

Finally, it also seems clear that the increasingly high
speeds that microprocessors can reach pose a compro-

4Please note ssm1=[21], ssm2=[29], ssm3=[31], and ssm4=[44]
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Fig. 7. Average execution time of the MOO strategies considered. The figures are given in milliseconds

mise to their energy consumption (as well as their re-
liability and lifetime). Therefore, minimizing their en-
ergy consumption is a significant challenge. However,
many data centers are usually quite optimized since
operators have strong incentives to reduce energy con-
sumption. Thus, the less energy a data center uses, the
greater the economic benefit of the organization.

However, using energy-efficient algorithms meth-
ods is still largely unexplored to date. It is assumed
that as the customer base grows, the energy needed to
provide the service grows as well. In this way, both
hardware-based solutions and instruction planning are
well thought out. However, our strategy can solve this
problem by creating assessment strategies offered in a
low-energy version of the source code to be executed.
When working with large data environments, its im-
pact on energy consumption will be significant. Be-
sides, as the operator is likely to save money, it might
encourage its users to use this kind of strategy.

Overall, we find it interesting to remark that we will
have little room for improvement if we optimize tradi-
tional data science models because they involve many
assumptions regarding the parameters they operate
with. With symbolic regression and MOO, computer
libraries can implement analogous functions (classifi-
cation, regression, clustering, and optimization) with
higher interpretability and lower energy consumption.
The reason is that the models generated have to assume
those requirements from the beginning. This means,
for example, that accuracy has to be as crucial as in-
terpretability and low energy consumption by design.
Alternatively, the human operator should be offered a

front of orthogonal solutions to decide which configu-
ration best fits the needs of its specific case.

5. Conclusions and Future Work

People should be able to trust the data-driven tech-
nologies they utilize in their everyday operations as
they become more important in many daily situa-
tions. Unfortunately, several technological domains
have been immersed in a rush to enhance accuracy in
recent years. As a result, novel solutions have paid in-
sufficient attention to other critical factors, such as the
long-term viability of the models they work with.

To overcome this situation, we have shown how
to design a strategy that considers three fundamental
objectives to achieve a sustainable assessment: accu-
racy, interpretability, and energy efficiency. Our study
shows that even if it is impossible to get optimal so-
lutions for all the three objectives, it is feasible to ob-
tain a model that allows finding compromise solutions,
leaving the decision-maker to choose the most suitable
model for the scenario in which it has to operate. This
represents a novelty for the community because it fo-
cuses, for the first time on sustainable models.

For future work, it would be good to consider that
the limited number of libraries for calculating the en-
ergy consumption has been a limiting factor of this
study. Our experimental setup has been performed
only on Intel processors. However, an in-depth analy-
sis of the implications of deploying our approach on
processors from other manufacturers (AMD, ARM,
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etc.) would be desirable. We want to point out that,
even if the execution of a single case does not produce
significant results, the cloud environment in which
these solutions are used, often involving millions of
executions, can have considerable savings associated.
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