
Boosting Annotated Web Services in SAWSDL

Antonio J. Roa-Valverde, Jorge Martinez-Gil, and José F. Aldana-Montes

University of Málaga, Department of Computer Languages and Computing Sciences
Boulevard Louis Pasteur 35, 29071 Málaga, Spain

{roa,jorgemar,jfam}@lcc.uma.es

http://www.lcc.uma.es

Abstract. The W3C Recommendation for Semantic Annotations in
WSDL and XML Schema (SAWSDL) defines an extension that can help
to disambiguate the description of Web Services during automatic dis-
covery and composition. In this way, SAWSDL is useful to facilitate the
grounding stage when annotating Web Services. Despite SAWSDL does
not specify a language to represent the semantic models for annotations,
most of the times, ontologies are used to do it. In this work we pro-
pose a mechanism to automatically enrich SAWSDL annotations using
concepts from different ontologies. As result, we provide a method for
helping experts to annotate web services according to the SAWSDL rec-
ommendation.

Keywords: Automatic Grounding, Semantic Web Services, SAWSDL.

1 Introduction

Semantic Web Services (SWS) are getting more popular among IT companies
and the research community as it can be noticed by the amount of ongoing
projects related with this topic. The SWS approach is not a new technology,
it is a fusion between the traditional SOA and Semantic Web technologies [1].
This initiative arose with the aim of solving the drawbacks of dealing with a big
amount of services. In this way, SWS have demonstrated that applying Semantic
Web technologies can be useful to automatize common tasks in the Web services
life-cycle.

According to the grounding stage (i.e. the stage where the semantic extensions
take contact with the underlying SOA technologies) efforts carried out resulted
in the W3C Recommendation for Semantic Annotations in WSDL and XML
Schema (SAWSDL) [2]. SAWSDL defines mechanisms using semantic annota-
tions which can be added to WSDL resources. These annotations can help to
disambiguate the description of Web services during automatic discovery and
composition. SAWSDL does not specify a language to represent the semantic
models for annotations, but ontologies are often used to annotate Web Services.

To achieve automatic Web Services annotation (commonly named automatic
grounding) is a key challenge for researchers. The automatic grounding is
strongly dependent of the underlaying semantic model. Still using a universally

S. Omatu et al. (Eds.): IWANN 2009, Part II, LNCS 5518, pp. 67–74, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.lcc.uma.es

68 A.J. Roa-Valverde, J. Martinez-Gil, and J.F. Aldana-Montes

recognized model the process of annotating automatically a Web Service is con-
ditioned to the WSDL descriptions. This problem would disappear if developers
use the same identifiers when they make reference to the concepts of such se-
mantic model. Despite this idea would facilitate semantic annotation tasks, to
demand the use of a common set of descriptors for developing Web services is not
doable. In this sense, the presence of an expert is required to curate the seman-
tic annotations. At this point a question rise up, why are automatic grounding
methods used for? To answer this question, the automatic grounding should be
thought like a tool for helping experts and not for excluding them of this task.
For example, there are domains such life sciences where the use of ontologies
to deal with the enormous amount of information available is becoming more
popular. In these domains, the information is many often processed via Web
services [3]. This kind of contexts are characterized by a dynamic environment
where new data and concepts arise in short periods of time. This issue is the
responsible for the existence of different ontologies to describe the same domain
and even for the changes produced on ontologies in use. The existence of an
automatic tool suggesting new annotations to the expert would be so useful in
this scenario.

In this work we propose a methodology to automatically enrich SAWSDL
annotations using related ontologies. We use the notion of transitivity and auto-
matic matching to adapt annotated WSDL files towards the new concepts. The
rest of this work is structured as follows. Section 2 describes the state-of-the-art
in relation to SAWSDL and Ontology Matching. Section 3 presents the tech-
nical preliminaries that compose the basis of our approach. Section 4 discusses
our methodology to solve the problem. Section 5 describes an use case where
the proposed methodology is applied. Finally, we remark the strengths of our
proposal and discuss the future work in Section 6.

2 Related Work

This section introduces the related work to the SAWSDL Recommendation and
advanced ontology matching techniques.

The Semantic Annotations for WSDL and XML Schema (SAWSDL) W3C
Recommendation defines mechanisms using which semantic annotations can be
added to WSDL components. SAWSDL does not specify a language for repre-
senting the semantic models, e.g. ontologies. Instead, it provides mechanisms
by which concepts from the semantic models that are defined either within or
outside the WSDL document can be referenced from within WSDL components
as annotations. These semantics when expressed in formal languages can help
to disambiguate the description of Web Services during automatic discovery and
composition. Figure 1 illustrate the extensions provided by SAWSDL.

Based on member submission WSDL-S1, the key design principles for
SAWSDL are:

1 http://www.w3.org/Submission/WSDL-S/

Boosting Annotated Web Services in SAWSDL 69

Fig. 1. Architecture of SAWSDL proposed by the W3C (Extracted from
http://www.w3.org)

– The specification enables semantic annotations for Web Services using and
building on the existing extensibility of WSDL.

– It is agnostic to semantic representation languages.
– It enables semantic annotations for Web Services not only for discovering

Web Services but also for invoking them.

Based on these design principles, SAWSDL defines the following three new at-
tributes for enabling semantic annotation of WSDL components:

– an extension attribute, named modelReference, to specify the association
between a WSDL component and a concept in some semantic model. This
attribute can be used especially to annotate XML Schema type definitions,
elements and attributes declarations as well as WSDL interfaces, operations
and faults.

– two extension attributes, liftingSchemaMapping and loweringSchemaMap-
ping, that are added to XML Schema element declarations and type def-
initions for specifying mappings between semantic data and XML. These
mappings can be used during service invocation to solve problems related to
the data format.

On the other hand, related to Ontology Matching [5] there are a lot of techniques
and tools for addressing it [6][7][8]. However, the complexity of the problem we
are dealing with causes existing solutions are not fully satisfactory. Most of these
strategies have proved their effectiveness when they are used with some kind of
synthetic benchmarks like the one offered by the Ontology Alignment Evaluation
Initiative (OAEI) [9]. However, when they process real ontologies they behave
worse [10]. Nowadays, current trends to solve this problem consists of combining
basic techniques.

The most outstanding basic techniques for Ontology Matching are: String nor-
malization, String similarity, Data Type Comparison, Linguistic methods, Inheri-
tance analysis, Data analysis, Graph-Mapping, Statistical analysis and Taxonomy
analysis. A detailed explanation for each of these techniques is presented in [11].

70 A.J. Roa-Valverde, J. Martinez-Gil, and J.F. Aldana-Montes

For the matching tasks, we use an architecture for conceptual mediation,
which allow users to infer information from the ontology-explicit knowledge,
enabling them to discover related ontologies by means of Semantic Fields [12].
In this way, we can get a high degree of success when obtaining ontologies similar
to an initial ontology. Semantic Fields is a generic infrastructure, so we propose to
integrate in this infrastructure the matching functions obtained by using GOAL
[11]. These functions have been optimized using the official benchmark from the
Ontology Alignment Evaluation Initiative (OAEI) [8].

3 Technical Preliminaries

This section introduces the technical preliminaries needed to understand our
approach.

Definition 1 (Similarity measure). A similarity measure sim is a function
sim : μ1 × μ2 �→ � that associates the similarity of two input ontology entities
μ1 and μ2 to a similarity score sc ∈ � in the range [0, 1].

A similarity score of 0 stands for complete inequality and 1 for complete equality
of the input ontology entities μ1 and μ2.

Definition 2 (Ontology Matching function). An ontology matching om is
a function om : O1 × O2

sim→ A that associates two input ontologies O1 and O2

to an alignment A using a similarity measure.

Property 1 (Transitivity in Ontology Matching functions). Let c1 ∈
O1, c2 ∈ O2 and, c3 ∈ O3 then

sim(c1, c2) = μ ∧ sim(c2, c3) = λ → sim(c1, c3) = μ · λ
Example 1. Calculate the similarity between plane and airplane knowing that
the similarity between plane and aeroplane is 90 percent and between aeroplane
and airplane is 90 percent too.

sim(plane,aeroplane)=0.9∧sim(aeroplane,airplane)=0.9
sim(plane,airplane)=0.81

.

4 Methodology

In this section, we propose a methodology to annotate WSDL components au-
tomatically according to external ontologies. The methodology that we propose
can be divided in five main steps as we show in Figure 2.

1. Identify the pair WSDL-Ontology we want to extend. This step involves ob-
taining each ontology referenced by the set of modelRerence attributes. Al-
though the SAWSDL Recommendation says nothing about the semantic
model to annotate WSDL our method has been designed to work with on-
tologies only.

Boosting Annotated Web Services in SAWSDL 71

Fig. 2. Methodology that we propose for adapting annotated web services in SAWSDL

2. Identify the concepts used for annotating WSDL concepts. In this step, it is
necessary to identify the concepts which are used for annotating the compo-
nents in the WSDL description. These concepts will be the input to look for
related ontologies as we will see in the next step.

3. Use Semantic Neighbourhoods to identify the new ontologies that will be used
to annotate the WSDL components. This is not a trivial task. If we choose
an arbitrary ontology probably we may find too few correspondences with
the original ontology. For this reason, we use the method described in [12]
in order to locate related ontologies.

4. Obtain the Semantic Correspondences from the previous step to apply tran-
sitivity. This step involves to obtain the Semantic Correspondences (usually
called mappings) between the existing concepts in the related ontologies. We
propose using the algorithms described in [11] to do that. Moreover, these
mappings could be pointing to different concepts from the same ontology. For
example, a WSDL element can be associated with two concepts. SAWSDL
Recommendation does not specify any relationship between these multiple
annotations other than saying that they all apply. It is up to the consumers
of these annotated WSDLs to use the ones that are relevant to them or
to figure out the relationship between the concepts, if they so choose, by
consulting the ontology that defines them.

5. Automatic generation of links between the initial WSDL and new ontologies.
The different matchings obtained in the previous steps are used to add the
new concepts discovered to the model reference set. Note that SAWSDL de-
fines the modelReference attribute as a list of URIs, so there is not limitation
in the number of references used.

72 A.J. Roa-Valverde, J. Martinez-Gil, and J.F. Aldana-Montes

Fig. 3. Illustration of the automatic grounding in SAWSDL

In the Figure 3, we show how an initial SAWSDL annotation can generate new
SAWSDL annotations automatically using the notion of automatic matching and
transitivity.

5 Use Case

In order to test our method we have perform it using the same example de-
scribed in [2]. This example consists of a purchase order Web Service interface
described in WSDL and annotated semantically using an OWL ontology called
PurchaseOrder. We have matched this ontology with other called Order by
using matching functions obtained using GOAL [11]. The obtained results are
showed in Table 1.

These results are used to annotate the WSDL components according to the
Order ontology in an automatic way. For example, the simpleType named

Table 1. Experimental results obtained

PurchaseOrder.owl Order.owl Confidence

UPCCode :PCode 0.70

Customer :Customer 0.88

Unit :Unit 0.79

Product :Products 0.76

OrderRequest :RequestOrder 0.55

CustomerID :Customer 0.69

LineItem :Item 0.50

OrderConfirmation :Confirmation 0.70

Quantity :Quantity 0.88

Boosting Annotated Web Services in SAWSDL 73

Confirmation points to the concept OrderConfirmation as it can be seen
below.

<xs:simpleType name="confirmation" sawsdl:modelReference=
"http://www.w3.org/sawsdl/purchaseorder#OrderConfirmation">

According to our methodology, this WSDL component could point to the con-
cept Confirmation which belongs to the second ontology. The reason is that the
discovered correspondence (OrderConfirmation, Confirmation) has a high de-
gree of confidence. Note that this semantic correspondence has been discovered
automatically. The new concept is added like a new reference to the list.

<xs:simpleType name="confirmation" sawsdl:modelReference=
"http://www.w3.org/sawsdl/purchaseorder#OrderConfirmation",
"http://khaos.uma.es/order#Confirmation">

The process described above is the same for each modelReference attribute ex-
isting in the WSDL file. If a service discovery task is launched using a richer
set of semantic annotations, the probability of discover the service is higher. In
order to get the most suitable service, the list of references should be the most
exact possible. This means that matchings with a low similarity measure must
be refused. For this reason, our method uses a threshold value to decide when a
reference should be added or discarded.

6 Conclusions and Future Work

In this work, we have presented a novel proposal for automatically enrich an-
notated Web Services in SAWSDL. The proposed methodology is based on two
key assumptions: a) The semantic model chosen to annotate Web Services com-
ponents is implemented as an OWL ontology and b) The fitness of this method
relies on the semantic correspondences found by the matching function.

As result our proposal helps experts with the tedious task of annotating Web
Services according to different ontologies. This first approach does not take into
account the schema mappings used during the invocation phase. In this way,
the developed method tries to boost the annotated Web Service adding new
annotations to the set of modelReference in each WSDL component. An initial
version of this tool has been configured at http://khaos.uma.es/sawsdl/.

As future work we consider several alternatives for the extension of the pre-
sented methodology: firstly, generate schema mappings using the information
available within the model reference set and secondly, add semantic to not an-
notated WSDL components from the scratch.

On the first hand, we are reviewing the most suitable techniques on data
mediation in order to take advantage of the schema mappings during Web Service
invocation. We are studying how to use existing model references within the
WSDL file to dynamically mediate the required data. A preliminary result shows
that mediation techniques in conjunction with matching functions could be useful

74 A.J. Roa-Valverde, J. Martinez-Gil, and J.F. Aldana-Montes

in this scenario. The presence of similar approaches in more complex models for
Semantic Web Services like WSMO [13] depicts that we are going in the right
direction.

On the second hand, we want to measure how good our method is when it
is performed directly using the WSDL descriptors, i.e, we try to provide the
expert with a first set of annotations without processing any initial semantic
model. Note that this wished approach is closer to the concept of automatic
annotation, however, as it has been stated, the presence of the expert is still
required to validate the fitness of the annotations.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(May 2001)

2. Semantic Annotations for WSDL and XML Schema,
http://www.w3.org/TR/sawsdl/

3. Wilkinson, M.D.: BioMOBY: an open-source biological web services proposal.
Links, M. Briefings In Bioinformatics 3(4), 331–341 (2002)

4. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
5. Do, H.H., Rahm, E.: COMA - A System for Flexible Combination of Schema

Matching Approaches. In: VLDB 2002, pp. 610–621 (2002)
6. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching

with COMA++. In: SIGMOD Conference 2005, pp. 906–908 (2005)
7. Drumm, C., Schmitt, M., Do, H.H., Rahm, E.: Quickmig: automatic schema match-

ing for data migration projects. In: CIKM 2007, pp. 107–116 (2007)
8. Ontology Alignment Evaluation Initiative (OAEI),

http://oaei.ontologymatching.org/2008 (last visit: January 29, 2009)
9. Shvaiko, P., Euzenat, J., Noy, N.F., Stuckenschmidt, H., Benjamins, V.R., Uschold,

M.: Proceedings of the 1st International Workshop on Ontology Matching (OM
2006) Collocated with the 5th International Semantic Web Conference (ISWC
2006), Athens, Georgia, USA, November 5. CEUR-WS.org (2006)

10. Martinez-Gil, J., Navas-Delgado, I., Polo-Marquez, A., Aldana-Montes, J.F.: Com-
parison of Textual Renderings of Ontologies for Improving Their Alignment. In:
CISIS 2008, pp. 871–876 (2008)

11. Martinez-Gil, J., Alba, E., Aldana-Montes, J.F.: Optimizing Ontology Alignments
by Using Genetic Algorithms. In: NatuReS 2008 (2008)

12. Navas-Delgado, I., Sanz, I., Aldana-Montes, J.F., Berlanga Llavori, R.B.: Auto-
matic Generation of Semantic Fields for Resource Discovery in the Semantic Web.
In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588,
pp. 706–715. Springer, Heidelberg (2005)

13. Roman, D., Lausen, H., Keller, U. (eds.): The Web Service Modeling Ontology
WSMO, final version 1.1. WSMO Final Draft D2 (2005),
http://www.wsmo.org/TR/d2/v1.1/

http://www.w3.org/TR/sawsdl/
http://oaei.ontologymatching.org/2008
http://www.wsmo.org/TR/d2/v1.1/

	Boosting Annotated Web Services in SAWSDL
	Introduction
	Related Work
	Technical Preliminaries
	Methodology
	Use Case
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

