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Abstract

Semantic similarity measurement aims to determine the likeness between two text expressions that use

different textual representations for the same real object or idea. There are a lot of semantic similarity

measures for addressing this problem. However, the best results have been achieved when aggregating

a number of simple similarity measures. This means that after the various similarity values have been

calculated, the overall similarity for a pair of text expressions is computed using an aggregation function

of these individual semantic similarity values. This aggregation is often computed by means of statistical

functions. In this work, we present CoTO (Consensus or Trade-Off) a solution based on fuzzy logic that

is able to outperform these traditional approaches.

1 Introduction

Semantic similarity measurement is a research challenge whereby two terms or text expressions are

assigned a score based on the likeness of their meaning [28]. Accurately measurement of semantic

similarity is considered of great importance in many computer related fields since this process is very

important for a number of particular scenarios. The reason is that textual semantic similarity measures

can be used for understanding beyond the literal representation of words and sentences. For example, it

is possible to automatically identify that some terms (e.g., Finance) could be matched with similar terms

(e.g., Economics, Economic Affairs, Financial Affairs, and so on).
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Identifying different expressions of the same concept is a key method in a lot of disciplines. For

example, we can refer to a) data clustering where semantic similarity measures are necessary to detect

and group the most similar subjects [4], b) data matching which consists of finding some data that refer

to the same concept across different data sources [22], c) data mining where using appropriate semantic

similarity measures can help to facilitate both the processes of text classification and pattern discovery

in large texts [11], or d) automatic machine translation where the detection of terms pairs expressed in

different languages is of vital importance [10].

Traditionally, this problem has been addressed from two different points of view: semantic similarity

and relational similarity. However, there is a common agreement about the scope of each of them [3].

Semantic similarity states the taxonomic proximity between terms or text expressions [28]. For example,

automobile and car are similar because they represent the same notion concerning means of transport.

On the other hand, the more general notion of relational similarity considers relations between terms

[29]. For example, nurse and hospital are related (since they belong to the healthcare domain) but they

are far from represent the same real idea or concept. Due to its importance in many computer-related

fields, we are going to focus on semantic similarity for the rest of this paper.

There are many methods for identifying semantic similarity. However, the best results have been

often achieved when aggregating a number of simple similarity measures [12]. This means that after the

various semantic similarity values have been achieved, the final similarity score for two text expressions

is computed using an aggregation function of the individual semantic similarity values. This aggregation

process is often computed by means of statistical functions (arithmetic mean, quadratic mean, median,

maximum, minimum, and so on) [20]. We think that these methods are not optimal, and therefore, results

can be improved. The reason is that these methods are following a kind of compensative approach, and

therefore they are not able to deal with the non-stochastic uncertainty induced from subjectivity, vague-

ness and imprecision from the humans when using their languages. We think that using a fuzzy operator

should help to outperform current results in the field of semantic similarity measurement. Therefore, the

key contributions of this work can be summarized as follows:
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• We propose CoTO (Consensus or Trade-Off), a fuzzy operator for the aggregation of semantic

similarity values that appropriately handles the non-stochastic uncertainty inherent to human lan-

guage.

• We evaluate the performance of this strategy using a number of general purpose and domain spe-

cific benchmark data sets, and show how this new approach outperforms the results from existing

techniques.

The rest of this paper is organized as follows: Section 2 describes the state-of-the-art concerning

semantic similarity measurement. Section 3 describes our novel fuzzy operator for the aggregation of

atomic semantic similarity measures. Section 4 describes our experiments and the results that have been

achieved when working with widely used benchmark data sets. Finally, we draw conclusions and put

forward future lines of research.

2 Related Work

Textual semantic similarity represents a widely intuitive concept. Miller and Charles wrote: ...subjects

accept instructions to judge similarity of meaning as if they understood immediately what is being re-

quested, then make their judgments rapidly with no apparent difficulty [24]. This viewpoint has been

reinforced by other researchers in the field who observed that semantic similarity is treated as a property

characterized by human perception and intuition [30]. In general, it is assumed that not only are the

participants comfortable in their understanding of the concept, but also when they perform a judgment

task they do it using the same procedure or at least have a common understanding of the attribute they

are measuring [25].

In the literature, we can find a number of works that try to find new semantic similarity measures.

This is mainly due it is of fundamental importance in many application-oriented fields of the modern

computer science. One of the most important reasons is that these techniques can be used for going

beyond the literal lexical match of texts. Recent advances have many implication in fields including (but
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not limited to) the automatic processing of text messages [17], healthcare dialogue systems [5], natural

language querying of databases [13] and question answering [23].

Sanchez el al. [31] proposed to group existing similarity measures into four categories:

1. Edge-counting measures which are based on the computation of the number of taxonomical links

separating two concepts represented in a given dictionary [18].

2. Feature-based measures which try to estimate the amount of common and non-common taxonom-

ical information retrieved from dictionaries [27].

3. Information theoretic measures which try to determine similarity between concepts as a func-

tion of what both concepts have in common in a given ontology. These measures are typically

computed from concept distribution in text corpora [16].

4. Distributional measures which use text corpora as source. They look for word co-occurrences in

the Web or large document collections using search engines [6].

It is not possible to categorize CoTO into any of these categories since we are not proposing a new

semantic similarity measure, but a novel method to aggregate them so that individual measures can be

outperformed. In this way, semantic similarity measures are like black boxes for us. However, there are

several related works in the field of semantic similarity aggregation. For instance COMA, where a library

of semantic similarity measures and friendly user interface to aggregate them are provided [12], or MaF,

a matching framework that allow users to combine simple similarity measures to create more complex

ones [21]. Unfortunately, all these approaches rely on the manual aggregation of the atomic measures.

For this reason, we think that CoTO, our fuzzy operator for the aggregation of atomic measures, is

an improvement over existing existing approaches. Additionally, CoTO presents the advantage of not

incurring in the disadvantages from the heuristic methods, since it does not require any training stage.
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3 Fuzzy aggregation of semantic similarity measures

The semantic similarity for two text expressions is usually computed using an aggregation function of

the individual semantic similarity values. This approach has proven to achieve very good results. The

idea is simple: to use quasi-linear means (like the median, the arithmetic mean, the geometric mean, the

root-power mean, the harmonic mean, etc.) for getting the overall similarity score. If there are some

individual measures that do not perform very well for a given case, their effects are blurred by other

measures that perform well. In this way, a decent improvement can be reached. However, all these

approaches present a major drawback: none of the operators is able to model in some understandable

way an optimal interaction between the different semantic similarity measures to be aggregated.

Overcoming this limitation is the purpose of this work. To do that, first we develop a fuzzy mem-

bership function to capture the importance of different semantic similarity measures, and then we use an

operator for aggregation of multiple similarity measures corresponding to different features of seman-

tic similarity. Experimental evaluations included in the next section will confirm the suitability of the

proposed approach.

3.1 Fuzzy modeling of semantic similarity

During a long time, similarity in general and semantic similarity in particular have been unknown and

intangible attributes for the research community. According to O’Shea et al. the question that had to be

faced was: Is similarity just some vague qualitative concept with no real scientific significance? [25]. To

answer the question a broad survey of the literature, taking in as many fields as possible, was conducted.

This revealed a generalized abstract theory of similarity [32], tying in with well-respected principles of

measurement theory, many uses as both a dependent and independent variable in the fields of Cognitive

Science, Neuropsychology and Neuroscience, and many practical applications.

In fuzzy logic, linguistic values and expressions are used to describe numbers used in conventional

systems. For example, the terms “low” or “wide-open” are designated as linguistic terms of the values

“temperature” or “heating valve opening”. If an input variable is described by linguistic terms, it is
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Figure 1: Fuzzy degrees of semantic similarity using three linguistic terms. Please note that, in this case,

each linguistic value can belong (to some extent) to two different linguistic terms

referred to as a linguistic value. Each linguistic term is described by a Fuzzy Set M. It is defined

mathematically by the two statements basic set G and membership function µ. The membership function

states the membership of every element of the universe of discourse G (e.g. numerical values of a time

scale [age in years]) in the set M (e.g. old) in the form of a numerical value between zero and one. If

the membership function for a specific value is one, then the linguistic statement corresponding to the

linguistic term applies in all respects (e.g. old for an age of 80 years). If, in contrast, it is zero, then there

is absolutely no agreement (e.g. “very young” for an age of 80 years).

Since most fuzzy sets have a universe of discourse consisting of the real line R, it would be imprac-

tical to list all the pair defining a membership function. A more convenient and concise way to define a

membership function is to express it as a mathematical formula. This can be expressed by means of the

following equation. The parameters a, b, c, d (with a < b <= c < d) determine the x coordinates of the

four boundaries of the underlying membership function.

m(x; a, b, c, d) = max

(
min

(
x− a

b− a
, 1,

d− x

d− c

)
, 0

)
We propose three linguistic terms for assessing the degree of semantic similarity between two terms

or text expressions: bad, fair and good1. The membership function states the membership of each of

these linguistic terms in the form of a trapezoid contained between zero and one. Figure 1 shows us this

more clearly: each linguistic value can belong to one of these three linguistic terms. Sometimes, a given

linguistic value can even belong to many different linguistic terms. For example, the semantic similarity

for the pair instrument-guitar can be assessed as 0.4 fair and 0.6 good (maybe 4 experts said fair and 6
1We will investigate approaches using a larger amount of linguistic terms in the future
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experts said good). This fact allows us to model semantic similarity in a non-compensative way, thus, a

much more flexible way that traditional approaches. As a result, more sophisticated aggregation schemes

can be proposed.

3.2 Fuzzy aggregation of atomic measures

In general, aggregation functions are defined and used to combine several numerical values (from the

different semantic similarity measures to be aggregated) into a single one, so that the final result of the

aggregation takes into account all the individual values in a given manner. However, the real issue arises

when these similarity measures give different results for the same scenario. Different techniques have

been used to aggregate the results. Most of them have reached a high level of success [20].

In our model, values can belong to either numerical or non numerical scale, but the existence of a

weak order relation has to be satisfied. Once values are defined, it is time to aggregate them and obtain

new value defined on the same scale, but this can be done in many different ways according to what is

expected from the aggregation operation, what is the nature of the values to be aggregated, and what

kind of scale has been used [14]. Aggregation is a wide research discipline in which numerous types

of aggregation functions or operators exist. The different aggregation strategies are characterized by a

number of different properties. But in general, aggregation operators can be divided into three categories

[15]: conjunctive, disjunctive and compensative operators. Most of existing approaches in this context

are based on compensative operators.

We want to investigate if dissident values are not taken into account for computing the overall score.

The rational behind this idea is that if dissident values are not good, taking into account them may

decrease the quality the overall similarity score. On the contrary, if dissident values are correct, ignoring

them can be detrimental. Therefore, our proposal is based on the idea of Consensus or Trade-off

what means that atomic semantic similarity measures have to be aggregated without reflecting dissident

recommendations in case of a consensus have been reached or using a high degree of trade-off in case a

recommendation consensus from atomic measures does not exist. The problem in applying this is that

an appropriate fuzzy aggregation operator for implementing this strategy does not exist. For this reason,

7



we have to design it by means of IF-THEN rules.

To be more formal, our CoTo aggregation operator on a fuzzy set (2 ≥ n) is defined by a function

h : [0, 1]n → [0, 1]

which follows these axioms:

• Boundary condition: h(0, 0, ..., 0) = 0 and h(1, 1, ..., 1) = 1

• Monotonicity: For any pair ⟨a1, a2, ..., an⟩ and ⟨b1, b2, ..., bn⟩ of n-tuples such that ai, bi ∈ [0, 1]

for all i ∈ Nn, if ai ≤ bi for all i ∈ Nn, then h(a1, a2, ..., an) ≤ h(b1, b2, ..., bn); that is, h is

monotonic increasing in all its arguments.

• Continuity: h is a continuous function.

Table 1 shows us the fuzzy associative matrix for implementing our strategy. A fuzzy associative

matrix expresses fuzzy logic rules in tabular form. These rules take n variables as input, mapping

cleanly to a vector. Linguistic terms are bad (the two text entities to be compared are not similar at

all), fair (the two text entities to be compared are moderately similar) and good (the two text entities

to be compared are very similar). A linguistic term reaches a consensus when it receives the highest

number of votes, in that case its associated fuzzy set will be the result of the aggregation process. In

case, two or more linguistic terms may receive the same major amount of votes2, two or more fuzzy sets

will be combined in a desirable way to produce a single fuzzy set. This is exactly the purpose of our

CoTo aggregation operation. Our final overall score will be computed by means of the trade-off of their

respective associated fuzzy sets. This trade-off can be achieved by any of the traditional processes of

producing a quantifiable result by means of defuzzification.

Last but not least, it is necessary to configure the parameters concerning the fuzzy terms from the

model. This means that we should run a preliminary study about the number of linguistic terms, thresh-
2For example, a scheme with 5 semantic similarity measures, where bad receives 1 vote, fair receives 2 votes and good

receives 2 votes
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ssm1 ssm2 ssm3 ... ssmn triggered

× × ... ×

× × ... ×

× ... × ×

× × ... ×

× ... × ×

× ... × ×

∼ ∼ ... ∼

∼ ∼ ... ∼

∼ ... ∼ ∼

∼ ∼ ... ∼

∼ ... ∼ ∼

∼ ... ∼ ∼

✓ ✓ ... ✓

✓ ✓ ... ✓

✓ ... ✓ ✓

✓ ✓ ... ✓

✓ ... ✓ ✓

✓ ... ✓ ✓

Table 1: Rules for aggregating the different semantic similarity measures (ssm). Linguistic terms are bad

(×), fair (∼) and good (✓). A linguistic term is said to reach a consensus when it receives the highest

number of votes, in that case its associated similarity score will be triggered. In case, two or more

linguistic terms receives the same majority number of votes, the final overall score will be computed by

means of the trade-off of their respective triggered scores by means of defuzzification
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olds, overlapping degree between trapezoids, defuzzification method, etc. The aim is to decide when two

text expressions can be considered as semantically equivalent. This stage can be performed by means

of parameter tuning. Parameter tuning consists of optimizing the internal running parameters in order

to reach our goal. In this case, we refer to the error minimization, so that the benchmark data set can be

solved with a minimum number of errors.

For the defuzzification process, we have chosen the method Center of Gravity (CoG) (a.k.a. fuzzy

centroid method) to find the final non-fuzzy value associated with the semantic similarity between the

text expressions to be compared. This classical method consists of computing the center of gravity for

the area under the curve determined by the rules triggered, and we have chosen it because this method

represents a trade-off between the rules triggered. This method can be computed as it is expressed in the

following formula:

CoG =

∑b
x=a µA(χ)x∑b
x=a µA(χ)

This method is similar to the formula for calculating the center of gravity in physics. The weighted

average of the membership function or the center of the gravity of the area bounded by the membership

function curve is computed to be the most crisp value of the fuzzy quantity.

Figure 2 shows us a summary of the whole process for clarification purposes. This process starts by

encoding a numerical value into a linguistic term by matching the given value within the limits of the

existing fuzzy sets these linguistic terms represent. Then, each linguistic term serve as an input for the

rule engine which implements the aggregation operator (CoTO). One of the advantages of fuzzy logics

is that the design of complex rules engines become an intuitive task (mainly due to the proximity of the

linguistic terms to natural language). In a further step, the rule engine triggers the rules that configure

the resulting fuzzy set. Finally, the final aggregated score is retrieved by computing the CoG of the

resulting fuzzy set.
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Figure 2: Overall summary of the fuzzy aggregation process: a) Values from n semantic similarity

measures (ssm) are fuzzificated into linguistic terms, b.1) a rule engine determines if there is a consensus

between linguistic terms and triggers n rules (rt) accordingly, b.2) if there is a consensus, only a resulting

fuzzy set will be generated, if not, two o more fuzzy sets representing the (two or more) most voted

choices will be generated, c) the CoG of the resulting set(s) is computed
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4 Evaluation

The comparison between the aggregated value for semantic similarity measures and human similarity

judgments is going to be calculated in terms of correlation between the two sets of ratings, thereby

giving us a qualitative assessment of the correlation with human similarity judgments. This in turn is an

indication of the usefulness in, for example, an information retrieval task. In this section we summarize

the main experiments and the results obtained in our study. We have used three different benchmark

data sets. Firstly, we aim to measure semantic similarity for general terms, to do that we are going to

use the Miller-Charles benchmark data set [24] which is intended for measuring the quality of artificial

techniques when assessing the semantic similarity of general words. Secondly, we are going to test

our approach using two domain specific benchmark data sets from the biomedical field. First of them

is called the Biomedical Medical Subject Headings (MeSH) [26] and it is intended for measuring the

quality of artificial techniques when assessing the semantic similarity of very specific words belonging

to the field of the biomedicine. The second one is a benchmark data set concerning medical disorders

that was created by Pedersen et al. in collaboration with Mayo Clinic experts [26]. Finally, we discuss

the result from our experiments.

It is important to remark, that our technique is going to be compared to aggregation methods using

the following family of means:

x̄(m) =
(
1
n ·

∑n
i=1 x

m
i

) 1
m

By choosing different values for the parameter m, the following types of means are obtained: m →

∞ maximum, m = 2 quadratic mean, m = 1 arithmetic mean, m → 0 geometric mean, m = −1

harmonic mean, m → −∞ minimum. It is also necessary to explain that all tables, except those for

the Miller & Charles ratings, are normalized into values in [0, 1] range for ease of comparison. This

means that we cannot include geometric and harmonic means since we allow the value 0 when assessing

semantic similarity and this may involve a error concerning division by zero.

In summary, from a strictly mathematical point of view, solving this problem consists on obtaining

the maximum value for the Pearson Correlation Coefficient [1] of two numeric vectors, one generated
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by human experts and other generated by a computational algorithm. The final result can vary between

-1 (results from humans and the proposed algorithm are exactly the opposite) to 1 (results from humans

and the proposed algorithm are exactly the same). Obviously, our challenge is to obtain a score of 1 what

may mean that our solution is able to perfectly replicate human behavior. It is also important to remark

that we compute the p-value for each result. The p-value is the value representing the probability to find

the given result if the correlation coefficient were in fact zero (null hypothesis). If this probability is

lower than the conventional 5.0 · 10−2, then the correlation coefficient can be considered as statistically

significant.

4.1 General purpose data set

First experiment is performed by using the Miller-Charles benchmark data set [24] which is a widely

used reference data set for evaluating the quality of new semantic similarity measures for word pairs. The

rationale behind this way to evaluate quality is that each result obtained by means of artificial techniques

may be compared to human judgments. Therefore, the ultimate goal is to replicate human behavior when

solving tasks related to semantic similarity without any kind of supervision. Table 2 shows us the results

of our approach. The columns called WordA and WordB represent the word pairs belonging to the Miller-

Charles benchmark data set. This collection of word pairs ranges from words which are not similar (for

instance, rooster-voyage) to word pairs that are synonyms according to human judgment (for instance,

automobile-car). Column called Human represent the opinion provided by people. This opinion was

originally given in numeric score in the range [0, 4] where 0 stands for no similarity between the two

words from the word pair and 4 stands for complete similarity. There is no problem when assessing

semantic similarity using values belonging to the interval [0, 1] since the Pearson correlation coefficient

is invariant against a linear transformation.

For determining the semantic similarity between terms which consists of using the knowledge in-

herent in the historical search logs from the Google search engine. We have decided to perform our

first experiment using four semantic similarity measures exploiting historical search patterns on the Web

[19]. These semantic similarity measures are: a) frequent co-occurrence of terms in search patterns, b)
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WordA WordB Human

rooster voyage 0.08

noon string 0.08

glass magician 0.11

cord smile 0.13

coast forest 0.42

lad wizard 0.42

monk slave 0.55

forest graveyard 0.84

coast hill 0.87

food rooster 0.89

monk oracle 1.10

car journey 1.16

brother lad 1.66

crane implement 1.68

brother monk 2.82

implement tool 2.95

bird crane 2.97

bird cock 3.05

food fruit 3.08

furnace stove 3.11

midday noon 3.42

magician wizard 3.50

asylum madhouse 3.61

coast shore 3.70

boy lad 3.76

journey voyage 3.84

gem jewel 3.84

automobile car 3.92

Table 2: Miller-Charles benchmark data set. Human ratings are between 0 (not similar at all) and 4

(totally similar)
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Method Score p-value

Pearson 0.13 5.1 · 10−1

Forecast 0.19 3.3 · 10−1

Co-occur. 0.36 6.0 · 10−2

Outlier 0.37 5.2 · 10−2

Maximum 0.23 2.4 · 10−1

Midrange 0.31 1.1 · 10−1

Minimum 0.32 1.0 · 10−1

Quadratic mean 0.38 4.6 · 10−2

Arithmetic mean 0.44 1.9 · 10−2

Median 0.46 1.4 · 10−2

CoTO 0.52 4.6 · 10−3

Table 3: Results for the aggregation of the different semantic similarity measures based on measures

taking advantage of Google historical data. Some traditional aggregation strategies outperform single

measures. However, CoTO beats all simple similarity measures and compensative operators.

computation of the relationship between search patterns, c) outlier coincidence in search patterns, and

d) forecasting comparisons. Each of these semantic similarity measures tries to determine the likeness

between text expressions by means of a smart analysis of their occurrences in the historical web search

logs from Google.

Table 3 shows the results for the aggregation of the different semantic similarity measures based on

measures taking advantage of Google historical data. Some traditional aggregation strategies (Quadratic

mean, Arithmetic mean and Median) outperform single measures, but the best score is achieved by using

CoTO.

Now we propose a new experiment using another kind of semantic similarity measure: the Normal-

ized Google Distance [9]. This semantic similarity measure consists of computing the the number of hits

returned by the Google search engine for a given set of keywords. The rationale behind this is that terms
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with the same or similar meanings in a natural language sense tend to be close in units of Normalized

Google Distance, while words with dissimilar meanings tend to be farther apart. This formula only uses

the probabilities of search terms extracted from the text corpus in question. Additionally, to perform this

experiment we are using also other web search engines Ask, Bing and Yahoo!. This idea was introduced

in [20]. Then, we are going to aggregate the values using our family of means and to compare the results

with our CoTO strategy.

Table 4 shows the results for the aggregation of the different semantic similarity measures based on

Google Distance over popular web search engines. Once again, some traditional aggregation strategies

(Quadratic mean, Arithmetic mean and Median) outperform single measures. But once again, CoTO

beats all simple semantic similarity measures and compensative operators. Moreover, the results are

statistically significant.

4.2 Domain specific data sets

MeSH, the first of the biomedical benchmark data sets is composed by a set of 36 word pairs extracted

from the MeSH data set [26]. Table 5 shows us a part of this data set. The columns called ExpressionA

and ExpressionB represent the text expressions belonging to this benchmark data set. Column called Hu-

man represent the opinion provided by 8 medical experts. The similarity between text expressions have

been also assessed between 0 and 1. Therefore, this data set ranges from biomedical expressions which

are not similar (for instance, Anemia-Appendicitis) to expression pairs that are synonyms according to

expert judgment (for instance, Antibiotics-Antibacterial Agents).

Table 6 shows the results for the aggregation of the different semantic similarity measures based

on cutting-edge similarity measures from the biomedical domain. Explaining each of them is out of

the scope of this work, but a detailed description can be found in [8]. Once again, the strategy CoTo

(Consensus or Trade-Off) is able to beat all the single measures as well as all the compensative operators

by a wide margin.

Concerning the second benchmark data set from the biomedical domain. It was created by Pedersen
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Method Score p-value

Ask 0.26 1.8 · 10−1

Yahoo! 0.34 7.7 · 10−2

Bing 0.43 2.2 · 10−2

Google 0.47 1.1 · 10−2

Maximum 0.26 1.8 · 10−1

Midrange 0.32 9.9 · 10−2

Minimum 0.42 2.6 · 10−2

Quadratic mean 0.53 3.7 · 10−3

Arithmetic mean 0.61 5.7 · 10−4

Median 0.61 5.7 · 10−4

CoTO 0.64 2.4 · 10−4

Table 4: Results for the aggregation of the different semantic similarity measures based on Google

Distance over popular web search engines. Some traditional aggregation strategies outperform single

measures. But once again, CoTo beats all simple measures and compensative operators. Moreover, the

results are statistically significant.

17



ExpressionA ExpressionB Human

Anemia Appendicitis 0.031

Otitis Media Infantile Colic 0.156

Dementia Atopic Dermatitis 0.060

Bacterial Pneumonia Malaria 0.156

Osteoporosis Patent Ductus Arteriosus 0.156

Sequence Antibacterial Agents 0.155

A. Immunno. Syndrome Congenital Heart Defects 0.060

Meningitis Tricuspid Atresia 0.031

Sinusitis Mental Retardation 0.031

Hypertension Failure 0.500

Hyperlipidemia Hyperkalemia 0.156

Hypothyroidism Hyperthyroidism 0.406

Sarcoidosis Tuberculosis 0.406

Psychology Cognitive Science 0.593

Adenovirus Rotavirus 0.437

Migraine Headache 0.718

Myocardial Ischemia Myocardial Infarction 0.750

Hepatitis B Hepatitis C 0.562

Carcinoma Neoplasm 0.750

Pulmonary Stenosis Aortic Stenosis 0.531

Failure to Thrive Malnutrition 0.625

Breast Feeding Lactation 0.843

Antibiotics Antibacterial Agents 0.937

Seizures Convulsions 0.843

Pain Ache 0.875

Malnutrition Nutritional Deficiency 0.875

Measles Rubeola 0.906

Chicken Pox Varicella 0.968

Down Syndrome Trisomy 21 0.875

Table 5: MeSH biomedical benchmark. Human ratings are between 0 (not similar at all) and 1 (totally

similar)
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Method Score p-value

Li 0.707 7.2 · 10−7

J&C 0.718 4.1 · 10−7

Lin 0.718 4.1 · 10−7

Resnik 0.721 3.5 · 10−7

Maximum 0.711 5.9 · 10−7

Minimum 0.712 5.6 · 10−7

Median 0.716 4.6 · 10−7

Arithmetic mean 0.722 3.3 · 10−7

Midrange 0.724 3.0 · 10−7

Quadratic mean 0.725 2.0 · 10−8

CoTO 0.771 7.1 · 10−9

Table 6: Results for the aggregation of the different semantic similarity measures based on cutting-edge

similarity measures. The strategy CoTo (Consensus or Trade-Off) is able to beat all the single measures

as well as all the compensative operators by a wide margin. The results are statistically significant.

Moreover, the results are statistically significant.
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et al. in collaboration with experts from the Mayo Clinic [26]. We have to say that the columns called

ExpressionA and ExpressionB represent the expressions pairs belonging to the Pedersen-Mayo Clinic

benchmark data set. This collection of text expressions ranges from cases which are not similar (for in-

stance, Hyperlidpidemia-Metastasis) to other cases that are synonyms according to the expert judgment

(for instance, Renal failure-Kidney failure). Column called Human represents the rating provided by

experts from the biomedical domain.

Table 8 shows the results for the aggregation of the different semantic similarity measures based

on cutting-edge similarity measures. Detailed description for each of these algorithms can be found in

[8]. Once again, we have that the strategy CoTo (Consensus or Trade-Off) is able to beat all the single

measures as well as all the compensative operators by a wide margin.

4.3 Discussion

Results show us that our CoTO strategy is able to consistently beat existing approaches based on com-

pensative operators when solving both general purpose and domain specific data sets. In fact, CoTO

has outperformed all existing semantic similarity measures and aggregation methods in all experiments

performed in this study. Moreover, the results obtained were statistically significant. The reason is that

unlike traditional aggregation techniques based on compensative operators, this aggregation strategy re-

quires a consensus or at least a trade-off between between majority opinions. This means that dissident

votes are not taken into account to compute the overall semantic similarity score. Therefore, our initial

hypothesis seems to be true: dissident values may decrease the final quality of the overall semantic sim-

ilarity score, so this fact can help to outperform current aggregation techniques based on compensative

operators.

The major reason for getting these good results is that fuzzy logic and the classic compensative

approach try to address different forms of uncertainty. Whereas both fuzzy logic and the classic com-

pensative approach can represent degrees of certain kinds of subjective judgment, CoTO uses the concept

of fuzzy set membership, i.e., how much a variable is in a set (there is not necessarily any uncertainty

about this degree), and the classic compensative approach uses the concept of subjective probability, i.e.,
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ExpressionA ExpressionB Human

Renal failure Kidney failure 1.00

Heart Myocardium 0.75

Stroke Infarct 0.70

Abortion Miscarriage 0.825

Delusion Schizophrenia 0.55

Congestive heart failure Pulmonary edema 0.35

Metastasis Adenocarcinoma 0.45

Calcification Stenosis 0.50

Diarrhea Stomach cramps 0.325

Mitral stenosis Atrial fibrillation 0.325

C. pulmonary disease Lung infiltrates 0.475

Rheumatoid arthritis Lupus 0.275

Brain tumor Intracranial hemorrhage 0.325

Carpel tunnel syndrome Osteoarthritis 0.275

Diabetes mellitus Hypertension 0.25

Acne Syringe 0.25

Antibiotic Allergy 0.30

Cortisone Total knee replacement 0.25

Pulmonary embolus Myocardial infarction 0.30

Pulmonary fibrosis Lung cancer 0.35

Cholangiocarcinoma Colonoscopy 0.25

Lymphoid hyperplasia Laryngeal cancer 0.25

Multiple sclerosis Psychosis 0.25

Appendicitis Osteoporosis 0.25

Rectal polyp Aorta 0.25

Xerostomia Alcoholic cirrhosis 0.25

Peptic ulcer disease Myopia 0.25

Depression Cellulites 0.25

Varicose vein Entire knee meniscus 0.25

Hyperlidpidemia Metastasis 0.25

Table 7: Mayo Clinic biomedical benchmark. Human ratings are between 0 (not similar at all) and 1

(totally similar)
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Method Score p-value

Jcn 0.111 2.8 · 10−1

Wup 0.483 3.4 · 10−3

Hso 0.701 8.0 · 10−6

Path 0.753 7.9 · 10−7

Minimum 0.354 2.7 · 10−2

Maximum 0.483 3.4 · 10−3

Midrange 0.501 2.4 · 10−3

Quadratic mean 0.667 2.8 · 10−5

Arithmetic mean 0.747 1.0 · 10−6

Median 0.786 1.3 · 10−7

CoTO 0.799 6.0 · 10−8

Table 8: Results for the aggregation of the different semantic similarity measures based on cutting-edge

similarity measures. The strategy CoTo (Consensus or Trade-Off) is able to beat all the single measures

as well as all the compensative operators by a wide margin. Moreover, the results are statistically

significant.
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how probable is it that a variable is in a set. The technical consequence of this distinction is that CoTo

relaxes the axioms of the classical compensative approach, which are derived from adding uncertainty,

but not degree, to the crisp values of subjective judgments.

5 Conclusions & Future Work

We have introduce a novel approach for the fuzzy aggregation of semantic similarity measures. This

novel approach can be summarized using the motto Consensus or Trade-off what means that atomic

semantic similarity measures have to be aggregated without reflecting dissident recommendations in

case of a consensus have been reached or using a high degree of trade-off in case a recommendation

consensus from atomic measures does not exist. Results show us that this novel approach is able to

consistently beat existing approaches based on compensative operators when solving both general

purpose and domain specific data sets.

In future, demanding applications where high accuracy of understanding of the user intent is needed,

the stakes are high and the users may present adversarial or disruptive characteristics in interacting with

systems will require the use of very precise semantic similarity measures. We want to investigate what

happens when the amount of linguistic terms for assessing semantic similarity measurement is increased.

Positive results in this context could lead to computers to be able to recognize and predict the semantic

similarity between text expressions without requiring any kind of human intervention.
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