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Abstract In recent times, the use of knowledge graphs has been massively adopted so that many
of these graphs can even be found publicly on the Web. This makes that solutions for solving
interoperability problems among them might be in high demand. The reason is that unifying these
knowledge graphs could impact a wide range of industrial and academic disciplines that can benefit
from aspects such as the ability to configure queries that were not possible until now. For example,
in the biomedical domain where there are significant problems of semantic interoperability. To
date, several effective methods have been put forward to solve the heterogeneity problems in
this knowledge ecosystem. However, it is not possible to assess their superiority in each different
scenario they are facing. Therefore, we explore several penalized regression techniques that can
mitigate the risk of incurring severe errors in real settings and preserve properties related to the
interpretability of the solution. As a result, we have obtained a proposal for entity meta-alignment
that yields promising results in the biomedical domain.

Keywords Knowledge Graphs · Knowledge Engineering · Knowledge-based Technology

1 Introduction

A Knowledge Graph (KG) is usually designed to represent any facts in the form of entities and spec-
ify how all these entities are connected. It is a powerful approach to connect and unify structured
information in a meaningful way and facilitates the design and development of more intelligent
information systems. The reason is that it allows both people and machines to consume semanti-
cally structured information. This fact has brought meaningful possible solutions for many tasks in
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several computer-related fields, including but not limited to question answering, recommendation
systems, information retrieval, and knowledge base completion.

However, when exploiting KGs, some pending challenges remain partially unsolved and
therefore require further research. Among all these pending challenges, there is one that stands
out from the rest because of the many applications involved: the so-called KG alignment. This
challenge aims to find semantic correspondences among multiple KGs. The current trends in this
context are focused on entity alignment (EA) since the entities are the potential pivot points that
might allow connecting different KGs [38].

Most existing methods typically rely on external information of entities (e.g., Wikipedia
entries [26]) and usually require costly manual supervision to complete an alignment. As a result,
solutions are needed that improve the process, lower the cost, or at least guarantee some perfor-
mance when implemented in real systems. For this reason, the EA problem in the context of KGs
has received much attention lately due to its great usefulness in a significant number of applica-
tions related to the discovery of semantic correspondences between different KGs. For example, it
is immediately evident that EA methods are essential to finding the connection points that allow
the mapping and merging of graphs that could greatly benefit the existing techniques for query
expansion.

Nowadays, there are many different approaches to face the EA challenge. The main prob-
lem is that most of the existing techniques are based on the so-called KG embeddings techniques
[9]. These techniques are mathematical methodologies to project the entities in a continuous vector
space, so these embeddings can be suitable to be efficiently processed by deep neural networks.
This fact is both a great advantage and a significant disadvantage of such approaches. On the
one hand, neural solutions can achieve the best results in most EA tasks [29]. However, as they
are based on neuronal learning, these models act as a black box, i.e., there is no human operator
who can understand how they work and need vast amounts of data to be trained with a certain
guarantee of success [7].

Our proposal focuses on a radical alternative to the use of embeddings. We want to
take advantage of the fact that the research community has proposed many different interpretable
strategies of a very different nature to face this challenge. Most empirical studies show us is that
it is not possible to determine which of these strategies is the best since this often depends on the
context, the type of graph, and even the use case on which the alignment challenge is focused.
Our hypothesis is that it should be possible to design a meta-alignment1 of interpretable methods
that can be put into operation in real settings with certain guarantees in terms of performance.
Therefore, the contribution of this work is:

– We propose a new approach for entity meta-alignment so that an intelligent aggregation of
existing methods can be put into production. The idea behind this proposal is to explore some
penalized regression methods to facilitate better generalization and, therefore, benefit from the
great degree of precision of some existing methods and, at the same time, the great coverage
that can be expected from other methods. In addition, we put as a restriction that we cannot
use black-boxes strategies as inputs of the ensemble.

– Moreover, under the assumption that a high degree of interpretability is better than a few
hundredths of precision, we evaluate and compare our proposal with existing solutions using
several popular benchmark datasets to show that putting an ensemble of methods into produc-
tion can provide more significant guarantees than relying on just one single method in terms
of accuracy and interpretability in real KG alignment scenarios.

1 The term meta-alignment reflects the idea that we do not build an alignment method from scratch, but we aim
to build an ensemble of existing ones
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The rest of this paper is structured as follows: In Section 2, we present the state-of-the-art
concerning entity alignment in the context of KGs. In Section 3, we introduce our novel strategy
for entity meta-alignment. In section 4, we present the results we have obtained after evaluating
our proposal regarding different biomedical datasets and an appropriate comparison with methods
representing the state-of-the-art. Finally, we conclude with the lessons learned as well as the future
lines of research.

2 State-of-the-art

The use of cognitive resources for their exploitation by automatic systems has gained much atten-
tion lately. The idea behind this is that they should serve as a data-driven framework in research
related to cognitive activities, and therefore it acquires direct importance in Artificial Intelligence.
Nowadays, these postulates have been possible thanks to the creation and publication of enormous
amounts of data stored and linked in the KGs. This knowledge is often accessible through the Web,
which provides a common framework for sharing and reusing data across application, enterprise,
and community boundaries.

A KG is a knowledge base in the form of a graph that has been designed specifically to
meet the complex storage and retrieval requirements of automated knowledge management with
the support of Artificial Intelligence or expert systems. Due to the great importance of social
sciences and communication networks such as social media, KGs have expanded in scale and
popularity. With the advent of these huge datasets, there is a growing need to provide big-scale
analysis methods and tools that can facilitate their exploitation. This is why methods to deal
with large KGs have attracted much attention in recent times. KGs usually consist of a set of
entities and information about the relationships between those entities. This knowledge can then
be used to improve a large number of existing methods in various computer-related problems. For
example:

– Question Answering systems, which are systems that try to reply in the most natural way
possible to questions asked by people. For example, the popular IBM Watson is a big-scale
question answering system that uses several knowledge bases in the form of a graph such as
YAGO and DBpedia as data sources to answer a wide range of questions of general-purpose
[6].

– Recommender Systems, which are computer systems that attempt to provide specific content
recommendations for the users. The fact is that the vast volume and variety of online con-
tent such as books, movies, and news has become a severe problem for users. The proper
exploitation of KGs can help to improve the recommender accuracy and increase the diversity
of recommended items. For instance, DKN [33] is a method based on CNN proposed to use
KGs for news recommendation.

– Information Retrieval, whereby we can see the example of Wikidata, which is a free and
collaborative KG that collects structured data to support Wikipedia, the Wikimedia Commons,
and the other wikis from the Wikimedia ecosystem [32]. Its great advantage is the imposition of
a high degree of structured organization, which allows easy retrieval of data by the Wikimedia
projects and determines how it can be reused.

– Knowledge Base Completion, which is one of the main forms of reasoning that is sought to
be carried out on knowledge bases. Since the facts in a knowledge base are stored in the form
of triplets of the form (subject, predicate, object), the completion objective is to guess new
triplets [21].
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In addition, another of the significant advantages of KGs is that they allow the integration
of new knowledge from multiple external KGs. Unfortunately, KGs are usually built using different
languages or with diverse ontological foundations, which results in great difficulty in integrating
the knowledge of external KGs [1]. For this reason, the EA challenge arises in the context of
the KGs. The task of EA alignment goes back to the challenge of ontology matching, whereby it
was a matter of finding the semantic correspondences between ontologies of the same domain in
an unsupervised way [4]. While the problem of EA in KGs has evolved by researching as broad
vocabularies as possible and establishing them as a standard, the most recent approaches take
a more data-driven view. Recently, the research community has become actively involved in the
design and development of embedding techniques. Nowadays, most KG alignment solutions rely
on embeddings to determine similar elements in different KGs [31].

Some of the most relevant works in this area include semantic aggregation and attribute
attention [11], Trisedya et al. propose to use attribute embeddings [30]. In contrast, Yang et
al. propose a co-training schema that considers both structures and attribute embeddings [36].
Berrendorf et al. suggest using Graph Convolutional Networks [2] or Wu et al. that propose a
relation-aware strategy for EA in heterogeneous KGs [34], and many more.

The major problem here is that mapping information from different KGs is far from
being trivial. In a typical setting, some of the alignments are known in advance (seed alignments),
and the task is therefore supervised. However, most of the time, this seed is not available, and
therefore it is necessary to rely on transfer learning techniques to overcome the limitations of a
cold start. In recent times, some research has proven that to obtain high-quality alignments. It is
crucial to combine information from different sources [29].

Furthermore, such a combination must be done strategically rather than following a
short-sighted approach. To do that, it is necessary to make some mild assumptions around the
idea of those equivalent entities in multiple KGs might usually have similar neighbors and attribute
names. Several researchers have already formulated this hypothesis. It is naturally assumed that
a system for EA could be either:

– Based on the KG structure. These methods are good for aligning due to their simplicity,
generality, and ability to deal with large-scale data. Initially, they utilize KG representation
methods to represent structural properties and embed KGs into individual low-dimensional
spaces. In this way, it is possible to extract complex features that take advantage of the
knowledge graph topology or leverage multi-step connections between entities hidden by simple
text analysis.

– Based on the entity attributes. For example, alignment of entities based on similarity. Older
entity alignment approaches use string similarity as the primary alignment tool. For instance,
LIMES [22] uses the triangle inequality to calculate correspondences. Current methods mainly
capture semantic information of entities, as semantics can be easily encoded as embeddings,
facilitating the fusion of different feature representations.

It is usual to consider some weighted distance function to properly balance both aspects,
which combines structural embeddings and entity’s attribute embeddings. For example, Eq. 1
shows a method for entity alignment prediction; both features could be defined as:

Dist(ei1, ei2) = θDist′(ei1, ei2) + (1− θ)Dist′′(ei1, ei2) (1)

Where θ is a hyper-parameter balancing the importance of both kinds of embeddings,
however, solutions of this kind have two fundamental disadvantages: they require vast amounts of
data to be trained, and they are not interpretable by a human operator.
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However, in practice, it is also possible to reach that balance using alternative methods.
Before embeddings became popular in the community, many alignment methods worked decently
well and were easy to understand by a human operator. This is especially interesting in the
biomedical field where one tends to work with knowledge models that are really large [18]. These
alignment techniques used to be divided into two: Knowledge-based approaches and corpus-based
approaches.

Knowledge-based approaches differ from the corpus-based approaches relying on co-
occurrence or distributional similarity. Knowledge-based approaches are usually considered when
working with structural KGs [37], while corpus-based approaches are typically applied in textual
corpora [28]. Several works mainly exploit the concept level knowledge (similar to the conceptual
schema in database setting), while the instance level knowledge is used to support the concept
of knowledge. Our research can focus on both kinds of entities. Our idea is to use these classical
techniques to add them strategically into an ensemble of methods that can do EA tasks with
great precision but without giving up interpretability. Besides, the volume required to train our
technique is several orders of magnitude less than that of neural network-based methods. We will
explain the technical details of our approach below.

3 Methods for Entity Meta-Alignment between Knowledge Graphs

Despite the large number of alignment techniques that have been proposed to date, finding the
most suitable alignment approach is still an issue since it is challenging to discern which of them
should be used in each situation. For this reason, we aim to find an appropriate technique to
reduce the tedious task of creating entity alignments manually in the best possible way. So we
propose a method for entity meta-alignment that reduces the uncertainty when implementing
an exploitation strategy. As we have already mentioned, there are currently many techniques for
addressing the challenge, so we aim to aggregate them following a strategic way to reduce the risk
of making mistakes in real scenarios.

One thing to consider is that concepts of the KG contain axioms describing concept
hierarchies and are usually known as classes (TBox). In contrast, axioms about entity instances
are usually known as instances (ABox). Therefore, one part is dedicated to the terminological
definition of concepts and their relationships, and the other is dedicated to instances (some authors
also use the term resource). While working on the TBox is a problem that can be solved from
a wide range of solutions since concepts are connected through relationships, and it is possible
to calculate paths, give weights to the connections, etc. working with the Abox is much more
problematic because they usually do not have that advantage. In Fig. 1, we can see an example
of a) the segmentation between TBox and ABox, and b) the opportunities that a good alignment
offers. Being able to find good pivot points invariably leads to the possibility of automatically
acquiring new knowledge. In fact, by discovering the optical organ - eye many new facts can be
inferred and the resulting model is considered to be more complete.

To find the correspondences, we aim to, instead of combining the features that come
from the structure with those that come from the entities; our proposal is based on a higher
level of aggregation. The units to be added are already existing methods. In addition, such an
addition can be made in many different ways. However, we consider traditional operators such as
arithmetic, geometric and harmonic media, or median, or mode are trivial. We intend to make
such aggregation using different kinds of regression as more complex interactions can be modeled
and remain interpretable.
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Fig. 1 Example of alignment between KGs. The possibility of finding a pivot point between the entities optical
organ and eye can facilitate the obtaining of new knowledge that can be useful in a wide range of domains

On the other hand, in this work, we rely on one of the most popular general-purpose
knowledge bases, i.e., WordNet2 which is a knowledge base that attempts to model synonymic
relationships as well as sub summary relationships between concepts. One of the most important
characteristics of this modeling method is that knowledge is structured in the form of a hierarchy.
There are several methods for calculating similarity based on the different paths calculated in
such a taxonomy. These methods are Path [24], Leacock [16], Wu & Palmer [35], Li [19], Resnik
[25], Lin [20], Jiang & Conrad [12], and wpath [37]). Our concept here is to aggregate all these
methods strategically so that a) we can reach higher levels of accuracy b) any person could take a
look at WordNet and the way the distance between the different concepts is calculated to realize
where the final semantic similarity value comes from. Below, we explain how we propose to build
the different ensembles.

3.1 Linear Regression

First of all, it seems like a good idea to explore linear models. Linear regression is one of the most
basic yet most interpretable approaches to aggregate numerical inputs. In fact, in linear regression
scenarios, it is possible to provide several inputs and, in return, get a meaningful value as output.
This is done by giving some weights to each of the input variables. In its most basic form, linear
regression does not penalize for its choice of weights. More formally, we look for a function:

y = α+ βx (2)

so that we can find

2 https://wordnet.princeton.edu/
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min
α, β

Q(α, β), for Q(α, β) =

n∑
i=1

(yi − α− βxi)2 . (3)

In this way, we want to minimize the error, i.e., the absolute measure of the shortest
distance that the points fall from the regression line. However, our hypothesis is that such a
simplistic model might not work very well. Since the number of simple methods to be added is too
large and the solution may not detect the most suitable methods. For that reason, we considered
using some types of penalized regression. These types of regression allow us to create models
penalized for having too many variables in the model, facilitating regularization and making over-
fitting difficult.

3.2 Lars Regression

Although linear regression is well known, it is often considered too simple to work well in real
environments. Thus, some variants have been designed that usually work better since they have
more sophisticated error regularization methods. For this reason, we could consider least-angle re-
gression (Lars) as an algorithm for fitting linear regression models to input data. The consequence
of imposing a penalty is to reduce the coefficient values towards zero. This allows the less contribu-
tive variables to have a coefficient close to zero. This kind of regression is used when over-fitting is
a concern (in our case, since we are concerned about our ensemble’s prediction capability). More
formally,

y = α+ βx, min
α,β

{
N∑
i=1

(yi − α− xTi β)2

}
subject to

p∑
j=1

|βj | ≤ t. (4)

The idea here is to identify the variable most correlated with the response instead of
fitting that variable, trying to move its associated coefficient iteratively towards its least-squares
value. Although the concept is simple, it usually works quite well in practice.

3.3 Neural regressors

However, the results that can be obtained with the above technique are not usually optimal. For
this reason, an alternative way to address the problem is to build a regressor for meta-alignment
based on neural networks. This regressor must be able to take the inputs from existing alignment
algorithms and must be able to configure a neural network whose output is the value of the
meta-alignment. This way of working could be able to guarantee that no single algorithm is relied
upon in production environments. We are interested in Multi-Layer Perceptron (MLP), a class of
feed-forward artificial neural networks. More formally, we need to find the weights, so that:

yi = f(xi, w) = wTxi (5)

In this way, we can calculate the distance to the error E.
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Fig. 2 Example of Multi-Layer Perceptron whereby a number of inputs are aggregated using a neuron, and the
desired output is compared to the aggregated scored in order to obtain the error

E(w) =

n∑
i=1

(f(xi,w)− yi)2 =

n∑
i=1

(ŷi − yi)2 (6)

In Fig. 2, we can see an example of how this kind of regressors try to minimize the error
between what is perceived as the desired result dj and the result obtained through the network
yj .

The great advantage of MLP is its capability to learn non-linear models. The problem is
that although these types of regressors usually work pretty well, they are challenging to interpret.
That means that we could give them the inputs and get a result, but a human operator would not
understand what happened in the middle of the process. When working with only one neuronal
layer, such as this case, the interpretation is still possible. In addition, they require large amounts
of data to be trained appropriately. However, there are no significant amounts of labeled data in
this context, so their application is often not optimal. Last but not least, the process of initially
working random weight leads to different results in each execution..

3.4 ElasticNet

Although working with neural networks is more likely to yield better results, there is a small
problem in their interpretability. It is possible to train the neural network, give it the inputs and
get an output that is usually quite accurate. However, a person cannot understand what happens
within that neural network since the only observable thing is many nodes and connections between
them. For this reason, sometimes it can make sense to use other strategies that, although not
so precise, are easier to interpret by a human operator. Therefore, as a possible ensemble, we
also consider ElasticNet, which aims to fit a linear model with coefficients w = w1, w2, ..., wn to
minimize the residual sum of squares between the observed targets in the dataset. This regressor
is appropriate in the fitting of linear regression models, and therefore it is highly interpretable.
The ElasticNet is a regularized regression method that linearly combines the L1 and L2 penalties
of other methods. It is a regressor with several advantages that include but is not limited to
reducing the number of predictors in the regression model by identifying the most important
predictors and discarding the redundant predictors. The great advantage of ElasticNet is that it
can estimate with potentially fewer predictive errors than the classical least squares method. So
it is ideal when dealing with highly correlated variables, so that is our case (The algorithms we
use as input are already quite accurate) since highly correlated inputs will tend to have similar
coefficients. More formally, ElasticNet regression can be defined as:
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Fig. 3 Classification of the different ML methods with regards to their trade-off between accuracy and inter-
pretability

β̂ = argmin(‖y −Xβ‖2 + α2‖β‖2 + α1‖β‖1). (7)

ElasticNet requires us to tune parameters to identify the best α and β. The concept
behind this regressor is that it penalizes the sum of absolute values of the weights and the sum of
squared value of the weights being regulated with another coefficient. As a result, highly correlated
inputs are assumed to have similar estimated coefficients. Our hypothesis is that this method
should work well in our scenario since aggregating methods that are already quite good, i.e.,
individual results, are somehow similar.

3.5 Considerations on the Interpretability

Interpretability has gained much specific weight in recent years. This is since during the last decade,
there has been a constant race to build models that yield better and better results, but this race
has lost sight that in the end, models must be used by people. Models will not be advantageous
if the people who use them cannot look at them, study them and understand them. If this is not
the case, it is clear that there will be great distrust and aversion.

The truth is that while there are methods that have very high levels of interpretabil-
ity: Consider a regression model (with or without penalty) on a set of basic semantic similarity
measures. However, empirical evidence shows that easily interpretable models are often quite sim-
plistic, so one must move towards methods capable of complex modeling interactions between
algorithms in the ensemble. Our approach considers that, even then, these interactions must be
easily understandable and reliable.

Figure 3 shows a highly accepted classification of the different methods concerning the
trade-off between accuracy and interpretability that they can model. The numerical values indicate
the level of interpretability that is usually associated with each of the different strategies. As can
be seen, the methods close to regression are highly interpretable since they allow us to precisely
know how each of the input variables is involved in producing the output value. On the contrary,
the deep neural solutions do not easily find out this correspondence and are therefore considered
black boxes in practice. In the frame of this work, we will use atomic methods based mainly on
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the use of dictionaries. These methods have been used recurrently for many years. They are highly
interpretable since any human operator can understand how to calculate the similarity between
words based on their location in a computer dictionary.

4 Experimental Studies

In this section, we present the results we have obtained after evaluating the performance of our
approach using large KGs. To do that, we have organized the section to explain the biomedical
benchmarks datasets to be used, the evaluation criteria that we will follow, the requirements for
parameter selection and cross-validation, the empirical results that we have achieved, and the
discussion on the results that we have achieved.

4.1 Datasets

In the context of this work, we will try to deal with domain-specific benchmark datasets from
the biomedical field, which are challenging to work with in terms of volume and variety. This will
give will us an idea about the behavior of our ensembles in real environments. The datasets used
by entity alignments methods are generally based on large-scale open-source data sources. In the
scope of this work, we have focused on KGs from the biomedical domain already published by
Kolyvakis et al. [13].

We consider here the foundational Model of Anatomy (FMA), a KG that represents the
phenotypic structure of the human body [23]. The Adult Mouse Anatomical Dictionary (MA),
which is a KG representing the anatomy of an adult mouse [10]. The NCI Thesaurus (NCI)
provides a standard terminology for cancer [3] and its anatomy subdomain describe naturally
occurring human biological structures. And finally, the SNOMED collection (SNOMED), which
is a KG of medical terminology to be used in clinical reports [5]. Some interesting examples of
similar entities that we need to identify are shown in Table 1. As can be seen in the sample, some
correspondences are immediate due to their lexical similarity. However, other correspondences are
not trivial and require the use of background knowledge to solve them.

FMA NCI Correspondence
triceps surae triceps surae True

endometrial cavity cavum uteri True
oropharynx human pharynx True

fallopian tube uterine tubes True
mammotroph lactotrope cell True

skull bone human cranium True

Table 1 Some examples of positive correspondences between two biomedical KGs

One of the characteristics in this context is the abundance of positive samples. The
reason is that, in real life, the experts usually provide positive correspondences between KGs.
There is no point in indicating negative cases, as negative cases are all those that are not positive.
However, this abundance of positive samples makes difficult the learning process, as most regression
ensembles assume the processing of balanced datasets (datasets with a similar number of positive
and negative samples). In practice, the number of similar entities between two KGs is several
orders of magnitude smaller than the number of all possible combinations.
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entities1 entities2 #positives #possible correspondences
MA-NCI 2,744 3,304 1,489 9,066,176
FMA-NCI 3,696 6,488 2,504 23,979,648

FMA-SNOMED 10,157 13,412 7,774 136,225,684

Table 2 Summary of the biomedical graphs we consider for our empirical studies

For this reason, we use the ground truth together with a randomly generated amount of
negative samples. This technique is well known in machine learning and consists of the random and
partial corruption of correct input data. For that reason, we aim to avoid an imbalance problem
in the context of this work.

Moreover, to realize the size of the datasets we are working with, we show in Table 2,
where it can be clearly seen that the proportion of corresponding entities is tiny compared to the
total number of possible comparisons that can be established. So we are faced with a complicated
problem.

In addition, it should be noted that there are many correspondences between those
KGs that are almost similar as we have already seen. This is very common when working with
real benchmarks, whereby everybody uses the exactly same names. For cases like this, it is very
informative to also provide information regarding the Levenshtein distance [17]. This distance
is considered to be a baseline in the literature since the idea behind is simple but effective: the
similarity between two (sets of) words is the minimum amount of single-character edits. More
formally, the similarity between two words could be considered as the inverse of the distance,
whereby the distance is defined as:

d(i,j) =


max(i, j) if min(i, j) = 0,

min


d(i− 1, j) + 1

d(i, j − 1) + 1

d(i− 1, j − 1) + 1

otherwise

The simplicity of this method does not prevent it from being one of the most used in
practice. Since most semantic correspondences that are usually found in real scenarios only differ
in a few characters.

4.2 Evaluation criteria

Experts do not usually provide values within a real numerical scale for the correspondence between
entities in real life. Such information is often confusing as well as tedious and challenging to obtain.
Therefore, experts usually provide their knowledge regarding the correspondence of entities using
a binary classification: the entities being compared are equivalent or not. Therefore, this type of
problem is usually evaluated by measuring the percentage of cases that the machine has found
out correctly.

As we have already mentioned, there is a way to evaluate a set of alignments between
KGs in which correct and incorrect mappings are identified to use the trained classifier to predict
whether an assertion of semantic equivalence between two concepts is or is not valid. To evaluate
the accuracy based on the ratio of successful cases, we need to use the precision as the fraction
of retrieved mappings that are relevant to the process where obviously, the greater the number of
relevant correspondences (i.e., the lower the number of incorrect cases), the precision will take a
value closer to 1 (or 100% if we want to work with percentages).
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Method ρ interp.
path 91.2% 0
lch 94.0% 0
wup 91.8% 0
li 91.5% 0
res 95.8% 0
lin 93.1% 0
jcn 90.9% 0
wpath 91.6% 0
OM-LSTM 97.0% 6
OM-TBERT 97.7% 6
OM-LSTM + SGAT 97.5% 6
OM-TBERT + GraphSAGE 95.4% 6
OM-TBERT + TransE 89.0% 6
DAEOM 98.1% 6
DOME 99.3% 6
LR 99.5% 1
Lars 99.5% 1
ElasticNet 99.5% 1
MLP 99.7% 2

Table 3 Results obtained for the FMA-NCI

4.3 Parameter selection and cross-validation

It is necessary to note that over-fitting is a common problem that can occur in most trained
models. To avoid that, k-fold cross-validation can be performed to verify that a given model is not
over-fitted. In this work, all our models are cross-validated. In addition, we consistently report the
highest cross-validation value. Furthermore, the implementation for the atomic methods is based
on Sematch3. However, some adaptations had to be made as the Wordnet dictionary is not able to
work with such specific terms. Therefore, we have transformed these models into a bag-of-words
model with individual word distances.

On the other hand, the implementation for the regression methods is based on Scikit-
Learn4. It is necessary to point out that the default settings of the mentioned methods have
been used in all the reported experiments. Moreover, the comparisons will be performed using the
following methods: DAEOM [14], DOME [27], and OM [34]. The reason for our decision is that
these methods have been the ones that have achieved the best results in the biomedical field so
far.

4.4 Performed experiments

Below, we show the experiments we have conducted. Most of these algorithms cannot work with
short textual expressions of the ”membrane of smooth endoplasmic reticulum” type. As we have
already mentioned, they use general-purpose dictionaries to calculate distances. But it is possible
to segment such short textual expressions and calculate the similarity between all words and then
calculate an average. In this way, such algorithms would also be prepared to work in this scenario.

Table 3 shows the results for the benchmark FMA-NCI that contains 2772 positive labeled
cases. Even though the results may seem very high, it is necessary to remark that 1684 of 2772
cases (60.75%) are trivial and could be solved using the Levenshtein distance.

3 https://gsi-upm.github.io/sematch/
4 https://scikit-learn.org/
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Method ρ interp.
path 87.9% 0
lch 96.7% 0
wup 92.7% 0
li 90.3% 0
res 96.7% 0
lin 92.7% 0
jcn 86.9% 0
wpath 90.0% 0
OM-LSTM 95.8% 6
OM-TBERT 96.6% 6
OM-LSTM + SGAT 97.1% 6
OM-TBERT + GraphSAGE 98.1% 6
OM-TBERT + TransE 96.1% 6
DAEOM 98.9% 6
DOME 98.5% 6
LR 99.7% 1
Lars 99.7% 1
ElasticNet 99.7% 1
MLP 99.8% 2

Table 4 Results obtained for the FMA-SNOMED

Method ρ interp.
path 91.1% 0
lch 96.0% 0
wup 92.2% 0
li 91.6% 0
res 96.0% 0
lin 91.2% 0
jcn 90.5% 0
wpath 91.1% 0
OM-LSTM 97.2% 6
OM-TBERT 97.7% 6
OM-LSTM + SGAT 98.1% 6
OM-TBERT + GraphSAGE 91.3% 6
OM-TBERT + TransE 72.2% 6
DAEOM 99.0% 6
DOME 98.8% 6
LR 99.0% 1
Lars 99.0% 1
ElasticNet 99.0% 1
MLP 99.1% 2

Table 5 Results obtained for the MA-NCI

Table 4 shows the results for the FMA-SNOMED benchmark that contains 8503 positive
cases. Again, it is not appropriate to look solely at the absolute values for accuracy since 4755 of
8503 cases (55.92%) are trivial and could be solved with a simpler method.

Finally, Table 5 shows the results for the MA-NCI that contains 1496 positive cases. Once
again, it is necessary to mention that for the MA-NCI benchmark, 729 of 1496 cases (48.73%) are
trivial and could be solved by solely using the Levenshtein distance. Moreover, it is clear that as
the samples available for training become much more numerous, the neural regressor begins to
demonstrate its superiority regarding accuracy, although not in terms of interpretability.

When the training data sets are enormous, the neural regressor can beat the rest. Because
while others assume linear relationships between data, the neural regressor can also detect non-
linear relationships, which gives it a clear advantage. However, penalized regression methods obtain
outstanding results and are much easier to interpret since the mapping between the inputs and
output is explicitly stated. So it is up to the user to decide whether it needs more accuracy at the
expense of the interpretability of the resulting model or vice versa.
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4.5 Discussion

One of the most critical aspects of the KGs is the quality of the represented information, including
other KGs. This is precisely at this point that the importance of having suitable alignment meth-
ods comes into play. As we have seen, there may be times when the best idea is not to develop
an alignment strategy from scratch but to design a solution that allows for the effective aggre-
gation of existing strategies. Many similar experiences already exist, for example, in the world of
word embeddings, where recent research can demonstrate that the linear combination of existing
methods is capable of surpassing the state-of-the-art [15]. It is also the case of meta-matching [8],
where traditional matching algorithms are added in a strategic way to solve the problems that
usually affect simple strategies when it comes to their exploitation.

From the results obtained from our experiments, it is worth noting that the neuronal
regressor gets the best results. Nevertheless, it is very convenient to point out two facts: a) it
requires large amounts of training data, and b) it is more difficult to interpret than other methods,
for example, the ElasticNet regressor, which does allow visualizing how the input measurements
are aggregated to shape the output. Moreover, by selecting the most relevant predictors and
discarding the redundant ones, the ensemble in the regression model is reduced which helps it
to generalize better. We can also observe that unlike synthetic datasets designed to test complex
cases in real KG alignment cases, there are many trivial situations to solve, using, for example,
Levhenstein’s distance. In our domain-specific benchmarks, we have found that almost half of
the similarity cases identified by the domain expert were trivial, so the accuracy of the results
was usually relatively high. Therefore, the interesting part is to observe how the methods studied
behave for not trivial cases.

Last but not least, although it may seem that models of increasing complexity will
always perform better, empirical evidence shows that easily interpretable models are not always
simplistic, so sometimes it is not necessary to move towards methods capable of complex modeling
interactions between methods in the ensemble. In fact, working with an intelligent aggregation
of simple methods that are already quite good has proven to be sufficient in the context of this
study.

5 Conclusions

In this work, we have presented our novel proposal for the meta-alignment of entities in the context
of KGs. To do so, and unlike most proposals in this context, instead of designing and developing
yet a new EA method, we propose a higher-level technique capable of performing a strategic
aggregation of an already existing pool of methods of diverse nature. To this end, we have studied
various forms based on penalized regression. In this way, if an entity alignment method does
not behave too well for a specific case, its impact can be mitigated by the rest of the alignment
methods. Hence, as a final result, there are certain guarantees that there will be no significant
errors when putting the system in operation in a real environment.

As we have seen in our evaluation, the methods based on penalized regression can beat
most existing solutions. The reason is that such aggregation strategy can benefit from the precision
of current techniques and at the same time dilute their weaknesses. To do that, our approach tries
to find the best way to add the semantic similarity values predicted by multiple existing methods
to determine the correspondences between the entities of the knowledge graph. We have also
seen that, although methods based on neural networks may give better results, they require vast
amounts of data for training and are challenging to interpret by a human operator, so regressors
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such as ElasticNet could make sense in situations whereby a high degree of interpretability is
better than a few hundredths of additional accuracy.

As future work, we have to work to discover other types of relationships between entities.
In this work, we have developed a strategy to discover same-as-type relationships. However, there
are many more types of relationships possible. For example, WordNet models its knowledge with
up to 18 different types of relationships, so we should train our models to recognize more types of
relations between entities. Secondly, we propose a multi-objective optimization scheme. So that the
meta-alignment proposal can be configured to fit the user’s need; thus, it is necessary to calculate
a Pareto front of solutions that cover two opposing objectives: accuracy and interpretability. So
the user can select the type of solution that best fits the scenario to be solved. In this work,
interpretability is inherent in the ensembles that we use, but we cannot control it. With a multi-
objective strategy, we could give the user the possibility to define what levels of interpretability
and accuracy are tolerable.
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