
Indirect Mass Flow Estimation based on Power
Measurement of Conveyor Belts in Mineral

Processing Applications
Bernhard Heinzl, Jorge Martı́nez-Gil, Johannes Himmelbauer, Michael Roßbory

Software Competence Center Hagenberg GmbH (SCCH)
Hagenberg, Austria

{bernhard.heinzl, jorge.martinez-gil, johannes.himmelbauer, michael.rossbory}@scch.at

Abstract—This study presents our most recent advances in the
design of a data-driven method for mass flow rate estimation
of conveyor belts. Our proposal is focused on obtaining an
indirect method that uses power measurement from the conveyor
belt. The aim is to replace traditional expensive measurement
hardware, which results in benefits such as lowering overall
costs as well as the possibility of working in hostile environments
such those with adverse weather conditions and the presence of
dust and vibration. The mass estimation is based on data-driven
estimations of idle power and net energy consumption. We discuss
different models describing the relationship between energy input
and transported mass: a constant proportionality factor, a time-
dependent factor and a regression model depending on the idle
power. We illustrate our approach on a case study where the
state-dependent model yields the most promising results across
multiple working periods.

Index Terms—Belt Weight Estimation, Mining Industry, Re-
gression Model

I. INTRODUCTION

In the context of industrial machinery, a belt scale (also
known as belt weigher or conveyor scale) is an artefact to
measure the flow rate and overall amount of material that has
been transported using a conveyor belt. Since weight is defined
as the gravitational attraction on a mass, the weight of the
material transported can be calculated by just weighing the
belt load and measuring the belt speed. This makes necessary
a scale or other form of weighing device as well as a speed
measuring instrument to determine the mass flow.

However, these kinds of artefacts are usually expensive since
they require highly-specialized equipment including at least a
scale, a scale integrating system, a calibration system, and a
speed sensor. Otherwise, the equipment would be considered
to be a source of certain error measurement. For example,
while it is common that general instrumentation systems can
generally tolerate an error up to 3%, belt scales demand error
margins up to 0.1%. Therefore, one of the most significant
issues acting as a bottleneck for the development of advanced
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automated industrial systems is the lack of accurate, yet
inexpensive methods, to measure mass flow rates [14].

In our specific case, in addition to the traditional issues
associated with belt scales, the fact that our field of study
is the mining industry is also a important. This means that
belt scales are often located in outdoor sites with bad weather
and environmental conditions: rain, snow, wind but also large
amounts of dust, vibrations, etc. which are common in most
of mining settings. So the whole problem associated with the
accurate calculation of the flow rate is even more difficult.

In the context of this study, we report the design and
development of a virtual belt scale for the mining industry
that has been specifically designed to overcome some of
the drawbacks associated with the current approaches. Our
research proposition is a data-driven method being able to
accurately estimate the flow rate and overall amount of trans-
ported material based on the use of inexpensive equipment
for power demand measurement of the conveyor belt. The
rationale behind this idea is that these measurements can be
specifically reused so that the final method might result in
lower costs.

Therefore, the major contribution of this work is the design
and implementation of a data-driven development of the virtual
belt scale to estimate features such as how much material has
travelled in one given time unit or to monitor material outputs
of any time unit (e.g. tonnes per hour, etc.). Besides, our
virtual belt scale represents a significant improvement for any
further kind of analysis over the gathered data. For example, it
can be exploited to perform data understanding, visualization,
evaluation for customers, and so on.

The rest of this work is structured as follows: Section II
presents the state of the art concerning automatic mass flow
estimation in machinery. Section III then briefly introduces the
case study and relevant data. Section IV outlines our technical
approach based on a data-driven method to indirectly estimate
the belt weight based on power measurement, followed by
going into detail regarding estimating the idle power in Sec-
tion V. Section VI then presents some results of the case study
where our approach has been successfully applied, followed
by a discussion in Section VII. Finally, we remark on the
conclusions and outline future research lines in the context of
this work.



II. RELATED WORK

A wide range of application domains requires developing
and implementing automated monitoring, control, and op-
timization systems for material processing applications. In
those cases, it is usually required to have accurate mass-
flow measurements from the processes. The truth is that belt
scales of small to medium cost are usually accurate when the
conveyor belt is fully loaded and well-maintained. However, it
is assumed that the accuracy of the belt scale decreases if the
conveyor belt is not fully loaded, due to physical imperfections
and its non-linear behaviour.

The use of belt scales in the industry is not new. Belt
scales have been traditionally used in many production and
logistic scenarios. For example, belt scales have been used
for measuring throughput and consumption in production
plants, internal balancing of supply and discharge, load limit
signalling, and so on. Besides, it is necessary to remark that
belt scales are the most common mass flow equipment used
in most of the material-processing factories nowadays.

In the specific case of the mining industry, the development
of monitoring and control systems for mineral processing
applications is of vital importance. The reason is that it is
often required to have accurate mass flow measurements. In
this context, a belt scale is one of the most common artefacts to
bulk material mass flow. The hard operational conditions of the
mining processes cause significant challenges and restrictions
(wind, dust, vibrations, etc.) for the proper usage of belt scales.

For these reasons, there is already literature that deals
with aspects related to the design and optimization of these
kinds of equipment. State-of-the-art solutions for the belt scale
can calculate an accurate mass flow measurement from the
process if calibrated properly. However, the high price of
the equipment prevents the installation of multiple belt scales
in most industrial premises or machinery [7]. Therefore, it
makes sense to do research oriented to find innovative ways to
alleviate the cost of this equipment. Some of the existing works
can be categorized according to the following classification:

• Machine vision [8, 6, 2],
• Laser profilometers [4, 10],
• Ultrasonic sensors [1],
• Radiation based sensors [5],
• Power transducers [3],
• Other signal processing techniques [13],
• Kalman filtering for tachometer response correction and

thus accurate flow-rate measurement [9, 11].
However, aspects such as the conveyor design, belt scale

location, and installation on the conveyor determine the effec-
tiveness with which the scale can interpret material loading
on the belt. Any change in location, direction, or external
conditions increases the consumption of resources in the
form of time and money for most solutions that need a re-
calibration according to the environment. This is the main
reason why we think that power demand measurement of the
belt conveyor is possibly a promising method available for
mass flow measurements at a reasonable cost. This opinion

is shared by several authors, including [12] where it is
mentioned that the use of indirect measures such as power
consumption could be an approach to be taken into account
mainly due to its low cost.

The contribution of this paper is the proposal of a method
that uses the motor power data for indirectly estimating the
mass flow on the conveyor belt while dynamically estimating
the idle power and taking into account environmental factors
that influence the power consumption. This has two main
benefits over other approaches: It reduces investment costs
for measurement hardware and it is able to operate under
adverse weather and environmental conditions without major
accuracy penalties. In the remainder of this work, we present
the technical details as well as an use case of this approach.

III. SYSTEM UNDER STUDY

A. Overview

The goal is to develop a virtual belt scale for continuous
weight measurement of bulk mineral material during transport
on a belt conveyor. The system is illustrated in Fig. 1. The
belt conveyor moves at a constant speed and has to overcome
a fixed height h. The belt is driven by an electric motor whose
electrical power consumption is measured and serves as the
basis for estimating the mass flow. This power consumption
is divided into an idle power P0 for driving the belt without
any load and the net power PN necessary for moving the load
itself. While PN is directly proportional to the transported
mass flow, the idle power is assumed to be independent of the
load itself.

In addition to the power measurement, reference measure-
ment systems are also installed on the test setup, in the form
of a belt scale and a camera system, which provide direct
measurements of mass flow and volume flow, respectively, as
training data for the regression model as well as for validation.
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Fig. 1. System under study consisting of conveyor belt with electric drive
motor and reference measurement system with Belt Scale and camera system
for volume measurement.



B. Data Acquisition and Management

We work with an architecture for data collection and man-
agement based on the protocol MQTT that is widely used in
the context of industrial machinery. The operation mode is
based on the connection of several data buses to the module
that acts as a broker of the MQTT messages and the different
parts of the architecture consume only the data messages that
are relevant to it. This way of working makes it possible to
work with a loose coupling architecture that is usually very
convenient in the development of modular solutions like this.

In the context of this work, two different buses are used
for data acquisition in the field: CAN Bus and Modbus. Data
from the CAN Bus are mainly related to the optical volume
measurement as well as the belt scale, while Modbus provides
electric power measurements. The major difference between
the two buses is that, while obtaining CAN Bus data messages
requires a passive read or push operation, obtaining Modbus
data messages requires cyclically pooling the respective data
logger in a freely configurable interval in a pull operation.
Once that we can capture all these data, we consolidate them
in a database so that can be the source for further analyses
including the automatic assessment of the mass flow.

IV. APPROACH

The basic method for determining material mass flow and
total mass builds on the physically motivated idea to measure
the power consumption of the belt drive motor for estimating
the current belt load. The total mass moved by the belt then
follows by integrating the mass flow over time.

In particular, the mass

M(∆) =

∫ t0+∆

t0

q(t) dt (1)

transported during the time interval ∆ and determined by the
mass flow q(t) is assumed to correlate with the net energy
input EN (∆) according to

EN (∆) = k ·M(∆) (2)

with the coefficient

k = k(ρ, ϑ, . . .) (3)

depending on the friction ρ, temperature ϑ and possibly other
external factors as well.

Thereby, the net energy

EN (∆) = Etotal(∆)− E0(∆) =

∫ t0+∆

t0

Ptotal(t)− P0(t) dt

(4)
is determined from the total effective power consumption Ptotal
minus the idle power P0 that is necessary for moving the belt
itself without the material.

One challenge in this approach is how to model the k factor.
Apart from using a constant value for k, time dependency, i.e.
k(t), enables the possibility to also take into account dynamic
effects over time. A state-dependent model, like in Equation 3,
on the other hand is able to react to changing environmental

factors, but is more difficult to model in practice. Based on
the assumption that friction, temperature etc. affect the total
power consumption in the same manner as the idle power P0,
a suitable alternative parametrisation could be

k = k(P0) (5)

where k is modelled as a function of the idle power P0. As a
first attempt, we investigate the following model,

k(P0) = α0 + α1P0 + α2P
2
0 , (6)

to describe the relationship between idle power and k factor.
Given measurement data for Etotal and the mass M , the

model parameters αi, can easily be estimated using linear
regression over EN :

EN = Etotal − E0 ∼ (α0 + α1P0 + α2P
2
0 ) ·Mmeas. (7)

For an accurate mass estimation, it is crucial to have reliable
data for the idle power P0, due to the fact that EN as well as
the k factor depend on P0, which in turn might be volatile due
to environmental factors like temperature ϕ and friction ρ. For
practical applications, this makes it necessary to dynamically
adapt the estimations of P0, a method for which is described
in the following section.

V. ESTIMATING IDLE POWER

The idle power P0 is defined as the electric power demand
for moving the belt drive without material, and the correspond-
ing energy input during the time interval ∆ is,

E0(∆) =

∫ t0+∆

t0

P0(t) dt. (8)

The idle power is subject to environmental influences, such as
temperature, friction, rain etc. It can therefore not be assumed
constant but has to be estimated dynamically over the course
of the working period.

Two steps are necessary for estimating the idle power P0:
1) Identification of idle phases: In those operating phases

in which the belt is empty, the measured total active
power represents the current idle power.

2) Regression model: Use a regression model to interpolate
between the identified idle points as an estimation for
P0 on the entire range.

A. Identification of Idle Phases

In our test setup, reference measurements from belt scale
and volume sensor can be used to deliver accurate information
about the idle phases during operation. As soon as both
reference measurements show no load, i.e. values close to
zero, an idle phase can be assumed. The intentional redun-
dancy between belt scale and reference measurement provides
additional robustness to mediate calibration and outlier issues.
In practice, it has shown that sensor calibration issues may
easily occur, which make reliable identification of idle phases
more difficult. It may happen that one sensor indicates idle
state, while the other one does not. This is mitigated by only



using measurements where both sensors show values close to
zero.

In addition, we check whether the power measurements
from potential idle points lie within a defined, plausible
range of values, e.g. in the interval [2000, 3500] W. If the
measurements fall outside this range, they are considered an
outlier and removed from consideration.

The result is a time series of measurement points that are
considered to be measurements of the belt drive power without
load.

B. Regression Model

A regression model based on the idle points determined
in the previous step provides an estimation of the actual idle
power P0 in phases when there is actually load on the belt.

In order to find a suitable means of approximation that best
fits the requirements imposed on the model, different methods
have been compared and evaluated, in particular (piecewise)
linear interpolation, linear regression and convex hull.

The most satisfying results in terms of accuracy and stability
were obtained by using a piecewise robust regression with
bisquare weights. Thereby, the overall time period is divided
into windows of fixed width, e.g. 5 minutes., in each of
which a local linear regression model is fitted, provided idle
points are present within this window. The obtained local
models, however, are only valid within their respective support
intervals within which support points are present. Outside
these support intervals, the individual local regression models
are connected to one another by means of linear interpolation.
This is also used across time windows where not support
points are available. Combined with extrapolation in the outer

areas, this method provides a continuous, piecewise linear
function describing the progression of the idle power over the
entire working period.

C. Results

Fig. 2 shows an example with power measurement and idle
power estimation on a section of a working period. The red
points shows measurements where idle state is assumed, i.e.
these are used for the regression. Compared to simple linear
regression (see figure), the piecewise robust regression is much
more dynamic, but better fits the measured progression of the
idle power.

The identified idle points in the plot show that the measured
idle power is not constant, but rather volatile, even with
continuous idling. This is why a sophisticated and robust
regression model is crucial for estimating the idle power.

VI. CASE STUDY RESULTS

A well-founded estimation for the idle power P0 is a
necessary prerequisite for calculating the net energy EN for
transporting the material as well as developing a regression
model for the k factor, which describes the relationship
between net energy EN and mass flow M . As training data for
the model, measurement values of the mass flow, Mmeas, are
available from the reference measurement system for several
working periods. Fig. 3 depicts one working period of the
training dataset with a comparison of different models for
k: Constant value kconst, time-dependent model with hourly
values khourly, and state-dependent model k(P0) according to
Equation 6.
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Fig. 2. Example power measurement with idle power estimation via linear regression and robust piecewise regression
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Fig. 3. Working period for training the regression model with comparison of different k models: constant value kconst, hourly values khourly and state-dependent
model k(P0). The bottom plot depicts the resulting relative error between predicted and measured mass flows.

The plots show that, compared to the other models, the con-
stant k value kconst only is a moderately good approximation
of the ”real” k ratio Mmeas/EN (shown in blue). However,
the relative error in the total mass at the end of the working
period is about 1.2%, which is lower than the error of the
state-dependent model k(P0) with 3.1%.

The hourly approximation khourly is an even better fit on the
training dataset (final error 0.3%). However, it performs worse
on the validation dataset. This is shown in Fig. 4, which depicts
a different working period, which is not part of the training
set, to validate the k model. On the other hand, the state-
dependent model k(P0) is able to provide the most accurate
results on the validation dataset, with a final error at the end of
the working period of about 0.1%, compared the the constant
model kconst with a final error of 3.4%.

VII. DISCUSSION

The simple model with kconst works well for individual
working periods, but its accuracy is not sufficient across
multiple different working periods. The time-dependent model

k(t) with hourly piecewise constant k values has also turned
out to be insufficient because the working periods are too dif-
ferent in time. Validation of the state-dependent model k(P0)
shows satisfying accuracy on selected working periods outside
the training set. Other working periods, however, especially
ones with significantly different environmental conditions,
experience larger errors – in some cases beyond 10%. This
variance cannot yet be adequately explained with the current
model. Additional influencing factors need to be examined
more closely, especially ambient temperature, transport height
and varying belt speed.

For calculating the net energy EN , it is important to have
accurate estimations for the idle power P0, especially when
working under rough conditions. It shows that, unlike in other
related works [12], a one-time calibration of a constant P0

value is not sufficient in real-world applications and instead
a dynamic estimation must be carried out based on measured
energy data. This enables to take into account transient en-
vironmental effects, like decreasing frictional resistance or
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Fig. 4. Validation working period, again comparing kconst, khourly and k(P0).

weather conditions, which cause strong fluctuations in the
power consumption.

When deploying the system in the field, where no reference
measurements in the form of a belt scale or camera system are
available, different methods can be employed to obtain reliable
feedback about idle phases. For example, it might be possible
to introduce periodic automated zeroing routines as part of the
operational control system, e.g. having 30 sec. of idle time at
the beginning of each working period. The denser these idle
points are, the more reliably the actual P0 can be determined.

Likewise, without a reference measuring system, no recali-
bration of the k model can take place. Here, ideally, a robust
model can be trained on multiple machines that are equipped
with a reference system, taking into account relevant external
factors, after which the model may be transferred to other
machines in the field.

VIII. CONCLUSION

In this work, we have presented our proposal for the design
and implementation of a data-driven method for the indirect

belt weight estimation based on power measurement of con-
veyor belts in mineral processing applications. In practice, the
most notable advantages of this approach for measuring mass
flow indirectly are twofold: The low cost of implementation
compared to sensor-based solutions that require periodic re-
calibration and the ability to work under rough conditions
including wind, rain, dust, vibration, or in general, any of the
adverse situations one might expect to encounter in a mining
environment and that could endanger the proper operation of
the equipment.

We have compared different variants of modelling the k
factor that describes the ratio between energy consumption
and transported mass. The results show that it can be feasible
to use a linear model with constant k factor, however, the
achieved accuracy of often too low for practical applications,
due to influencing environmental factors, such as ambient tem-
perature or varying friction. Under such conditions, a model
k(P0) depending on the idle power P0 has shown to be more
promising in selected working periods. Other working periods
with significantly different environmental conditions, however,



show significantly higher deviations, which is why accuracy
and robustness of the model still need to be improved.

As future work, we intend to collect more measurement
data in order to perform a more comprehensive statistical
analysis on additional features. It is to be expected that a
greater quantity and quality of collected data could provide
us with an improvement on accuracy. The ultimate goal is to
increase accuracy without incurring additional costs in terms
of money, time or additional operator effort.
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