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Abstract

Up to this day the practical economical application
of automated driving stays behind the high expec-
tations that were raised by the great successes of
Deep Learning. There is no doubt that fully au-
tonomous (level 5 automated) driving in all weather
and road conditions is a much more challenging
problem then initially expected. Yet there is an-
other obstacle that hinders developers and users to
exploit the existing state of the art for applications
with limited scope and capabilities and this is a
complete lack of viable procedures for the admis-
sion of autonomous vehicles (AVs) without safety
driver to any contact with the public traffic. Ar-
guably this lack itself is rooted in the skepticism of
the society and the missing technical competences
in the public administrations.
In this paper we propose and advocate to install
a comprehensive independent testing and certifica-
tion procedure for the admission of digital pilots
without safety driver for specific use cases in lim-
ited conditions. The successfully certified applica-
tion - this is the promise of the process - is then fi-
nally approved for public road traffic even without
a safety driver in the vehicle.
It is only by providing this clear perspective of a
driverless application that makes the development
of specific use cases economically feasible.

1 Introduction
The digitalisation and automated driving assistance undoubt-
edly have already contributed to making the public traffic
safer and more efficient than it has ever been. Automated
navigation with real-time information about the current traf-
fic on the route and the various assistance technologies relieve
the driver from many worries and tasks. Nevertheless, one of
the most essential goals of this development, the driverless
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automated vehicle is still lagging far behind the high expec-
tations that have been propagated and proclaimed during the
last decade. In fact, the possibility of sending AVs around on
public roads without the need of a human driver is the key to
the expected transformation of the public traffic and a trans-
formation of the way how we organize the transportation of
both human and goods in the 21st century. The famous ”last
mile”-problem for deliveries is only one representative exam-
ple that is waiting to be solved.

Driver assistance systems do allegedly already contribute
to safer and more relaxed driving. But it is only the fully
autonomous digital pilot that will enable the transformatory
power and the high financial savings that are necessary in or-
der to take broad advantage of automated driving in our na-
tional and international economies. In addition, sustainability
goals, like car-sharing of energy efficient electric cars that au-
tomatically go and recharge themselves, are hindered by the
lack of a trustworthy digital pilot that safely maneuvers the
vehicle in absence of any human safety driver.

Currently, many possible customers that would have valu-
able use cases for automated driving vehicles are reluctant to
invest into that development. We think that this is mainly due
to the uncertainty, if and how a working vehicle would be
admitted to the public traffic. Governmental administrations
have hitherto failed to provide a clear framework and regula-
tory pathways on how a digital pilot could be tested, validated
and finally admitted to the public streets.

We would like to highlight the variety of generalizations
needed for the different economically valuable use cases for
digital pilots. It may be technically simple to build an auto-
mated farming vehicle that can find its way from the farmer’s
home to the work site, but because that route goes over several
kilometers of public road, such a vehicle cannot be sold or op-
erated because driverless vehicles are in general currently not
allowable on public roads. Even the possibility that the vehi-
cle encounters pedestrians in the field is currently prohibiting
the admission.

Another such example could be a last mile application in
rural environments, where villages that have no own station
of public transport or limited bus connections that travel just
twice a day, could be connected to the next hub with a sim-
ple AV that is just traveling back and forth on one route.
Both these use cases lose their economical value as soon as a



safety-driver is required in the AV as per current regulations.
It is obvious, that in view of the risk that even a demonstrably
working application would not be admitted to a driver-less
working mode, such economically valuable use cases are not
even developed in the first place.

By definition, both these use cases fall under the category
Level 5 automation due too the fully automated driverless
operation mode. Obviously, their requirements are far away
from the broad generalization that ”true” Level 5 driving ne-
cessitates. It is even conceivable to apply specific additional
road markings, specific new traffic signs or even specific new
traffic laws that regulate how humans have to react on visible
AVs. This is all comparable to existing public transport reg-
ulations, as we do already have, e.g. extra bus lanes, or the
right of way for public buses exiting the bus stop.

Thus, we propose to engage in a certification process for
the admission of digital pilots to the public traffic in well-
specified use cases. We advocate to create a public admission
certification process in corporation with a notified body such
as the TÜV. It is understood that this certification process has
to be authorized by corresponding local and national laws.
The admission test itself should then be very similar to a cer-
tification audit of any other artificial intelligence (AI) system
with the special point that the acceptable level of errors is
very low, as we will discuss in the following section.

2 Related Work
2.1 Costs and Harms
The use of AI contributes to safer driving, improving overall
traffic flow and thereby reducing infrastructure, air pollution
and accident costs. An article from the National Highway
Traffic Safety Administration (NHTSA) highlights the fol-
lowing benefits of AVs: NHTSA estimates that human error
is the cause of 94% of all serious traffic crashes. As argued
critically in [Koopman, 2018], by far not all of these 94%
will be avoided by AV and also digital pilots will make mis-
takes. By defining strict enough criteria for the admission
we can create at least the fair expectation that the number of
crashes attributed to the digital pilot will be below 20% of
that attributed to human drivers. In the following, we thus
assume that certified AVs will reduce the 94% by 80%, re-
sulting in a total 75% drop of the accident rate. NHTSA cal-
culated $242 billion (USD) in damages to the U.S. economy
caused by crashes in 2010, and another $594 billion in dam-
ages caused by deaths or injuries following traffic crashes. In
total, traffic crashes in the U.S. cause about $836 billion in
damage annually [NHTSA, 2015].

In terms of the Austrian economy, which is equivalent to
about 2.34% of the U.S. economy using gross domestic prod-
uct (GDP) by purchasing power parity (PPP), traffic accidents
cause total annual damages of about $19.56 billion (C17.25
billion). The study by [Chen et al., 2019] again only con-
sidered accidents in relation to Austrian GDP in its analysis
and calculated costs of around $5.36 billion (C4.4 billion).
Higher economic costs of around C9.7 billion per year were
calculated in a 2017 study by [Sedlacek and Mayer, 2017]
for the Federal Ministry for Climate Protection, Environment,
Energy, Mobility, Innovation and Technology (BMK), which

included human suffering, loss of performance potential and
property damage linked to accidents.

Based on the C9.7 billion and with the assumption that
AVs can prevent 75% of caused traffic accidents, an annual
damage reduction for Austria of about C7.2 billion and for
Upper Austria of about C1.2 billion would be possible.

Costs caused by accidents
(Billion C)

US EU AT OÖ

Based on [NHTSA, 2015] 737.4 538.0 17.25 2.9

Based on [Chen et al.,
2019]

4.4 0.7

Based on [Sedlacek and
Mayer, 2017]

9.7 1.6

Table 1: Summary of the costs caused by accidents

2.2 RAND Report

The RAND report [Kalra and Paddock, 2016] searched the
answer for the following question, which is of public concern:
“How many miles would be enough to test AVs before they
are allowed on the road for consumer use?” For this, it replied
to the following three questions first.

Q1: “How many miles would AVs have to be driven with-
out failure to demonstrate that their failure rate is below some
benchmark?” This question was answered by reframing fail-
ure rates as reliability rates and using success run statistics
based on the binomial distribution [O’Connor and Kleyner,
2012; Kleyner, 2014]. The formula for Q1 in Table 2 pro-
vides a lower bound on the number of failure-free miles, n
with the confidence level C, where R stands for reliability
and can be interpreted as the probability of not having failure
in any given mile.

For instance, to demonstrate that fully AVs have a fa-
tality rate of 1.09 fatalities per 100 million miles (R =
99.9999989%) with a C = 95% confidence level, the vehicles
would have to be driven 275 million failure-free miles.

Q2: “How many miles would AVs have to be driven to
demonstrate their failure rate to a particular degree of pre-
cision?” If the assumed failure rate is λ∗ [Mathews, 2010],
then Q2 in Table 2 implies the number of miles that must be
driven, where δ is the desired degree of precision and z1−α/2

is derived from the precision of failure rate estimate described
with the width of 100(1− α)% confidence interval (CI) [De-
Groot and Schervish, 2012].

If it is assumed that a fully AV fleet had a true fatality rate
of 1.09 per 100 million miles, then based on this information
it can be determined, that approximately 8.8 billion miles of
driving would be required to estimate the fatality rate of the
fleet to within 20% (δ = 0, 2) of the assumed rate using a
95% CI.

Q3: “How many miles would AVs have to be driven to
demonstrate that their failure rate is statistically significantly
lower than the human driver failure rate?” The two equations
given for Q3 in Table 2 determine the required failures (and
miles), where λ0 is the human driver failure rate, λalt is the



Applied Eqs. Outcome

Q1
n = ln(1−C)

ln(R)

≥ 275 million
failure-free miles

Q2
x =

(
z1−α/2

δ
)2

λ∗

≈ 8.8 billion miles

Q3
x = (λalt

z1−α

λ0−λalt
)2

n = λalt(
z1−α

λ0−λalt
)2

≈ 5 billion miles

Qorig n = λalt(
z1−α+z1−β

λ0−λalt
)2

≈ 11 billion miles

Table 2: Summary of approaches applied by the RAND report and
their derived findings

AV failure rate and α is the significance level, with which the
null hypothesis λ ≥ λ0 should be accepted or rejected.

This means, if one supposes a fully AV fleet had a true
fatality rate that was A = 20% lower than the human driver
fatality rate (per 100 million miles), then it would take ap-
proximately 5 billion miles to demonstrate that the assumed
difference is statistically significant with 95% confidence.

Qorig: From the findings above one can derive how many
miles AVs need to be driven to perform better than human
drivers with some probability (see the normal approximation
for the distribution of fatalities for Qorig in Table 2).

Accordingly, AVs must be driven more than 11 billion
miles to determine with 95% confidence and 80% power (i.e.,
β = 0.2) that their failure rate is 20% better than the human
driver fatality rate. With a fleet of 100 AVs being test-driven
24h a day, 365 days a year at an average speed of 25 miles
per hour, this would take 518 years.

In order to make these numbers of test cases viable we will
stick to the statistical method of the RAND test but apply
it only to virtual tests, i.e. to simulated testing. Note, that
the statistical validity for the approval of a specific AV with
a specific digital pilot software is only valid as long a the
software is not changed during the batch of the test. This
fact was a problem for the practicability of this RAND test in
the real world, but it is no problem in simulations. And it is
understood that we will aim for a compression of the statistics
by focusing on critical interactions and corner cases, in order
to reduce the amount of simulation time by some orders of
magnitude [Els, 2018], a compression method that could also
not be applied in reality.

Of course it finally is up to the law makers who will decide
about the target values for performance and this will deter-
mine the corresponding test length. Such decisions might or
might not be based on statistics similar to those used in the
RAND report.

2.3 Simulations and Reality Gap
As already mentioned, the 11 billion miles of the RAND Re-
port show that acquiring a valid test statistics in reality is way
too expensive. The obvious solution is virtually generated
input data for the AVs’ sensors, which various traffic simu-

lators can generate. There are commercial products in this
area, such as Carmaker (CM) and Virtual Test Drive (VTD),
and open source solutions, such as CARLA, Microsoft Air-
Sim, VisSim, CarSim, Gazebo, TORCS, Udacity simulator,
and AutonoVi-sim.

The issue with simulation is that it is never equivalent to
the reality, hence yielding a reality gap. Machine Learning
(ML) models that have been learned using only virtual data
usually have major problems when applied in practice. There
are differences between the simulated and real environments
in visual and physical properties [Bousmalis et al., 2017].
In order to use these simulations for testing AVs this ”re-
ality gap” has to be closed. For learning various methods
have been proposed to overcome the reality gap, as e.g. do-
main randomization [Tobin et al., 2017; Borrego et al., 2018;
Tremblay et al., 2018]. In this process, all objects used are
randomly generated, thereby changing number, shape, posi-
tion, direction, texture, field of view, lights and noise. In this
way, the trained model integrates a wide range of realizations
of the environment to which the real world can be added as re-
alization example. Domain randomization is mainly applied
in basic object recognition. [Reway et al., 2020] also present
a method to measure the reality gap of object detection which
is a part of the problem. Note that the validity of the sim-
ulations with respect to the reality gap, will have to be be
assessed case by case by the expert audit.

2.4 AI Certification & Standards
According to [Winter et al., 2021] the certification process is
usually represented as a circular process where it is necessary
to pass through a series of stages. As a rule, it is checked
whether certain requirements (e.g. technical standards) have
been met. An external and independent authority verifies con-
formity with these conditions during the testing process. Both
descriptive and analytical standards are considered during the
evaluation. It is worth noting that in most certification pro-
cesses, confidence in the expertise and sound judgments of
the assessors is critical. It is often assumed that simulations
alone, whether virtual or physical, are not sufficient in most
of cases, so the vehicle and all data generated must be care-
fully reviewed and checked against the data associated with
hazardous situations. Examples include the development of
techniques to analyze risks and ensure data privacy against
attacks or electronic measures that are not as expected. There-
fore, the authors of [Winter et al., 2021] state that the certifi-
cation is only possible when performing white box testing. It
is part of the certification process to get insight into how the
AI works in order to conduct a thorough evaluation of it. A
final certificate is then valid for three years, for example, after
which re-certification is required.

In our specific context, the safety of human drivers serves
as a vital benchmark against which AV can be measured. And
we note that despite the significant total number of crashes,
injuries, and fatalities caused by human drivers, the incidence
rate of these failures is minimal when it is related to the num-
ber of kilometers driven. So that benchmark is quite a chal-
lenge for a digital pilot.

With the aim to build a focal point for AI standardiza-
tion in the broad field of AI, ISO and the International Elec-



trotechnical Commission (IEC) have set up a joint technical
committee ISO/IEC JTC 1, Information technology, subcom-
mittee SC 42, Artificial intelligence. Among its many man-
dates, experts are investigating different approaches to estab-
lish trust in AI systems, e.g. ISO/IEC JTC 1/SC 42/WG3
standards [ISO, 2020], ISO/AWI PAS 8800 (under develop-
ment) [ISO, 2022]. A comprehensive overview of standard-
ization committees and respective work programs on AI cer-
tification can be found in [Winter et al., 2021].

3 Methods
3.1 Dimensions for Trustworthy Autonomous

Vehicles
The High-Level Expert Group on Artificial Intelligence (AI
HLEG) has formulated in its Ethics Guidelines for Trustwor-
thy AI [Commission et al., 2019] the conditions whether an
AI system being developed, deployed, or procured can be cat-
egorized as a trustworthy AI. The later Assessment List for
Trustworthy AI (ALTAI) [HLEG, 2020] derives seven key re-
quirements composed of multiple criteria.

A more recent report from the European Commis-
sion [Commission et al., 2021] continues this work and sets
a basis for assessing trustworthy AI in the autonomous driv-
ing domain by translating the seven key requirements to the
context of AV. The goal of the report is to progress towards
a general AI trustworthiness assessment framework for AVs.
The authors mention the next steps the Commission should
do such that the Member States take advantage of the good
opportunities to develop new harmonized AV type-approval
frameworks. The report describes the main aspects of the au-
tonomous domain and provides an exhaustive analysis of the
seven key requirements. There is also an evaluation of the rel-
evance and urgency of each criterion in the context of the AV
domain for all types of vehicles, automated (up to SAE Level
3)) and highly automated or AVs (at least SAE Level 4): crit-
ical in the short term, important in the mid term and impact
in the long term. Although this is a much needed analysis, the
provided relevance table is useful during development and in-
ternal testing phase, but cannot be considered during the cer-
tification process. In this last phase, all key requirements and
criteria have to be assessed.

Our goal is to create an assessment framework for fully au-
tonomous digital pilots such that the trustworthiness of that
AI-system can be assessed in a holistic way. Therefore, we
have evaluated the seven key requirements in this context and
split them into two categories. Firstly, we have defined sev-
eral dimensions which are required to assess each digital pilot
individually. Secondly, we have considered the requirements
that can be assessed through generic regulatory and standard-
ization processes. Following, we start by describing each di-
mension and show their relation to the criteria defined by AI
HLEG [HLEG, 2020]:

• Security: This is one of the main criteria of the key
requirement Technical robustness and safety, which is
mainly linked to the principle of prevention of harm. By
security we also address the resilience to attack crite-
rion, which means testing the exposure of the AVs to

threats such as technical faults and defects, outages and
potential cyber attacks.

• Functional Correctness: This is the main test if the dig-
ital pilot correctly respects the functional requirements.
This comprises general safety with the scope of improv-
ing safety of all road actors and its environment. The
difficult problem of defining holistic accuracy metrics
has to be done once for the overall admission process.
The individual digital pilot only has to be tested for its
functional correctness versus those predefined metrics.
Moreover, the functional correctness comprises the indi-
vidually defined reliability of the digital pilot under test
and the fallback plans and the reproducibility of the be-
havior, respectively.

• Traceability: This dimension asks for information over
the process of designing, training, testing, validating and
applying of AI algorithms to allow checking their ac-
tions and examine the methods by which they have been
taken.

• Explainability: This dimension assists the empowered
user in comprehending how the pieces of information
are used and how the vehicle decides. Additionally, this
testing dimension is intended to support the approval
process in assessing, e.g., the remaining reality gap and
gaining the trust in the intended generalizations.

• Accountability: This dimension can be put in place
by addressing the two sub-criteria: auditability and risk
management. The first one deals with assessing the al-
gorithms, data and design process and therefore, it re-
quires that a digital pilot incorporates mechanisms that
allow experts to distill the insights of the operations. An
organizational framework and policies have to allow in-
ternal, but also independent external auditors to clearly
identify which piece of information contributed to which
piloting action. The second criterion, risk management,
addresses the in-depth analysis of the inter-operation of
the AV with its environment in the specific intended use
case, such that the negative impacts resulted from the
use case are identified and tackled. The dimension of
accountability has to make sure that a transparent trace-
ability and auditability are granted for all possible risks.

• Impartiality: This dimension addresses the sub-
criterion avoidance of unfair bias and and asks for both
internal and external checks to aid in making fair deci-
sions and avoid any discriminatory bias.

• Data Governance: These criteria refer at respecting
data privacy and to not use the vehicle for anything other
than what it was designed for.

The following requirements and criteria provided by the AI
HLEG are not necessarily to be specifically assessed for each
digital pilot, but through generic regulatory and standardized
interfaces.

• Fall-back plans and reproducibility are strongly linked
to reliability and traceability and can be addressed by
the specific checking actions.



Figure 1: Representation of trustworthiness dimensions for digital
pilots (inner circle segments) with associated existing solution ap-
proaches (outer circle segments).

• Communication is an important aspect for the accep-
tance of AVs and therefore, it takes a central place in
the design of AVs. The design of the communication
interfaces is challenging, because of the multi-user per-
spective. There exist two categories of users: the users
inside the vehicle, which can be divided based on the
automation Level (Level 1 and 2 - assisted driver, Level
3 - assistant/backup driver, or Levels 4 and 5 - passen-
ger with no driving responsibility), and the external road
users. In our target domain of fully automated digital pi-
lots, the communication with a passenger is minimal as
compared to other automation levels. The intervention
of the passenger is only required for some strategic tasks
(e.g. specification of the destination, requesting a stop).
There are no shared responsibilities and no handovers
have to be defined. The correct communication with the
external road user is part of the functional correctness
dimension. In the case where the empowered user must
understand the decisions/actions of the AV, explainabil-
ity and traceability (through data logging) represent the
basis for the car-user interaction.

• Human agency and oversight: These requirements ad-

dress the principle of respect for human autonomy and
traditionally, the sense of human agency is depending on
the level of automation. That is, at a fully automated dig-
ital pilot, only specially empowered users (e.g. admin-
istrative staff over a remote link) are allowed to override
the automation. The passengers are restricted to some-
thing like pushing the emergency button and waiting for
a respective reaction. Such human oversight principles
have to be defined by regulations for fully autonomous
(public) digital pilots in general and must therefore not
be assessed at each digital pilot individually, except for
the functional correctness of the implementation of such
rules.

• Societal and environmental well-being: This is a user-
oriented factor that means that regulations are needed to
define the usage of AVs and the potential environmental
impact (e.g. emissions, traffic jams, pollution, etc.).

• Accessibility and Universal Design: This sub-criterion is
part of the key requirement diversity, non-discrimination
and fairness. The assessment process is following in this
case general regulations which are specific for the uni-
versal design and indicated by the relevant bodies.

• Stakeholder Participation: The list of stakeholders in the
AVs domain is extensive and therefore, a clear taxonomy
is required. The assessment process follows in this case
the procedures formed by public and non-governmental
institutions.

3.2 Existing Solution Approaches
For the assessment of the seven dimensions described in the
previous section, we have defined six test methods, with
which each digital pilot must be evaluated individually. Fig-
ure 1 shows the assignment of the trustworthiness dimensions
(inner circle) to the test methods (outer circle). It should be
noted that none of the methods is sufficient in itself to perform
a holistic assessment. The methods include:

Scenario-based testing (standard) uses virtual simulation
environments to check safety and reliability according
to the requirements for trustworthy AI. In doing so, AVs
must pass a variety of different test scenarios, such as
lane changes, turns, or overtaking, as far as those are
necessary to fulfill the needs of the targeted use-case.
With ML supported mutation tests, AVs are targeted
to their system limits to provoke failures and score the
systems with so-called mutation scores. A major diffi-
culty in scenario-based testing is the test case definition
and generation, since it is currently not possible to ver-
ify that all scenarios for safe operation are present in the
test catalog. We expect that the limitation to the specific
use-cases simplifies that process significantly.

Extended Scenario-based testing extends the standard pro-
cess through various methods. Examples include root
cause analysis, formal rule-based testing, logging &
documentation, automatic generation of scenarios with
ML, and a fairness pipeline that supports detection and
mitigation of bias and explanation of metrics in data sets.



Verification based on formal methods can be used to
achieve completeness, while testing can only prove
the presence of errors, but not their absence. Formal
verification relies on mathematical models to prove or
disprove specific specifications and properties. What
differentiates it from testing is that the formal verifi-
cation method is able to find an erroneous state in the
system if it exists, and if so it can be demonstrated that
this is an issue in the system model. Using semi-formal
verification together with testing is also an amenable
approach in dealing with ML systems. The goal of these
methods is to find corner cases in ML algorithms which
may lead the system to an unsafe state.

Rule-based verification is the tool for the verification of ap-
plicable laws and traffic rules. Several solutions are
proposing the use of rule-based systems as a basis ap-
proach to translate traffic rules to corresponding formats
that can be further used to check the behavior of driv-
ing models. [Deng et al., 2020] detail in their paper
a declarative, rule-based metamorphic testing approach
called RMT that enables domain experts to specify cus-
tom rules derived from real-world traffic rules using a
domain-specific language. [Xiao et al., 2021] propose
a rule-based approach for transforming traffic laws and
other driving rules to formal rules that have a prior-
ity structure. Our method of testing is intended to re-
fine these approaches and ensure that the digital pilot
emerges unambiguously as the innocent road user in
simulated accidents according to the current law. This
should allow for a sufficiently fluid, efficient and dy-
namic driving behavior, in contrast to an over-restrictive
traffic rule interpretation.

Machine Learning – XAI is a set of tools and frameworks
that help to understand, comprehend and interpret the
predictions of ML models. It allows to debug or improve
the model performance and thereby helps humans to un-
derstand its behavior in a systematical and interpretable
manner. [Samek et al., 2019]

Machine Learning – Adversarial methods Adversarial
ML aims to exploit models by creating hostile situations
utilizing accessible model information. The most
common reason for this is to cause a ML model to fail.
The vast majority of ML algorithms were designed to
work on specific problem sets in which the training
and test data were drawn from the same statistical
distribution. When such models are applied in the real
world, adversaries may produce data contradicting that
statistical assumption. This data could be altered to
exploit vulnerabilities and compromise results. Evasion,
poisoning, model extraction, and inference are the four
most common adversarial ML strategies.

Because of the complexity of an autonomous system, the
process of ensuring its trustworthiness is considered to be an
interdisciplinary challenge [Rajabli et al., 2020]. As men-
tioned before, none of the methods is sufficient for assess-
ing the digital pilot, if considered separately (e.g.: Formal
methods and rule-based approaches as stand-alone solutions
are only applicable at component level and not at system

Figure 2: Sketch of the steps required to verify trustworthy AI in the
case of autonomous driving.

level). Therefore, all methods mentioned before are specif-
ically guided by the team of auditors. They do so not just by
following standard methods, but they have to be aware of the
current state of the art in the relevant technical and scientific
fields and do their best in order to challenge the digital pilot
and identify its weaknesses. They have to assess every ap-
plication individually and finally give an informed judgment
about its trustworthiness.

4 Results
For the verification of trustworthy AI in autonomous driving,
a concept of a holistic test process is proposed. This test pro-
cess consists of five main steps: Virtual Testing, Real Testing,
Expert Audit & Pre-Certification, Field Testing in Deploy-
ment Environment and Final Certification by Expert Audit.

As shown in Figure 2, these five steps form a sequence sim-
ilar to a sequence of quality gates on the way to a certificate
of trustworthiness. This means that, for example, virtual tests
and real tests at the test site can be regarded as prerequisites
for the field tests or the final certification step.

In the following, the individual quality gates are discussed
in more detail.

4.1 Virtual Tests
The first stage of the certification process consists of scenario-
based simulation tests. These tests are the basis of the test-
ing suite for the obvious reason that these tests are relatively
cheap and non-destructive. Depending on the targeted use-
case the intensity of these tests may vary, for very limited
use-cases a nearly exhaustive testing of all intended scenarios
might even be possible. The stochastic validity, i.e. repre-
sentative power of these tests is assured by an online random
generation of the testing scenarios, which makes training-to-
the-test a futile approach. Different sets of test scenarios and,
in particular, critical scenarios, the edge cases, which can be
extracted from traffic data recordings, serve as the basis for
the distribution from which the tests are drawn. These virtual



test are also intended to simulate crashes and accidents of all
forms. The automated rule-based testing has then to identify
if the digital pilot would legally be to blame for its driving
behavior. There are countless situations where accidents can-
not be avoided even by an efficiently driving digital pilot. So
the test is failed only if the digital pilot is found guilty for the
accident. Nevertheless the accident avoidance behavior pro-
vides interesting insights into the holistic trustworthiness of
the digital pilot.

4.2 Real Tests at the Test Site
The number of testing scenarios that can be played within
a testing lab is very limited. Therefore these real tests can
never be representative for all scenarios, not even in limited
use-cases. The aim of these tests is to verify that the digital
pilot exhibits the same reactions in the real tests as it does in
the virtual simulation for the same scenarios. Thus, this is the
first tool in the chain that is necessary to gain the trust that the
reality gap is closed. Any deviation in behavior between the
real scenarios and their counterpart in the simulation raises
concerns that have to be discussed in the following Expert
Audit session for the pre-certification.

4.3 Expert Audit, Pre-Certification
The Expert Audit is where the ”natural intelligence” and the
know-how in the scientific state-of-the-art of the auditing sci-
entists come into play. The functional correctness was proven
in the extensive virtual tests. However, the validity of these
tests concerning the reality gap has to be established by expert
insight into the modules and the inner working of the digital
pilot. Apart from the usual catalog-like audit questions and
measurements, the expert has to decide if the internal design
and the training procedures led to a robust and trustworthy
digital pilot. The pre-certification audit serves as a permis-
sion to carry out field tests in the operational environment
and also decides about the distribution of test-scenarios that
should be staged in the field tests.

4.4 Field Tests in the Operational Environment
The aim of the field tests is to expose the digital pilot to ran-
domly selected scenarios with random environmental condi-
tions in real road traffic and to evaluate recordings and logs of
the inner working details of the digital pilot. All road sections
that are part of the intended operational environment can be
used as a test track. To ensure safety, the vehicles to be tested
must be continuously monitored by a safety driver during the
field test, who must be able to intervene and take control of
the vehicle at any time. If the construction of the vehicle pro-
hibits the transport of persons then the AV in the field test has
to be closely observed and controlled with a suitable remote
control.

Note that the trustworthiness of the digital pilot has in prin-
ciple already been demonstrated in the tests prior to the field
test. The field test is mainly intended to confirm the hitherto
gained results and insights. The field test is not statistically
sufficient for a positive conclusion (as we know from section
2.2). But even a single fail or critical deviations from the ex-
pected behavior in the field Tests could lead to a rejection of

the admission. The assessment what failing or critically de-
viating precisely means is highly non-trivial and is decided
upon deep inspection of the test protocols in the final Expert
Audit.

4.5 Expert Audit, Certification
As the final stage in the certification process, the results of
the field tests are analyzed and compared with the expecta-
tions from the pre-certification audit. This is the ultimate test
to establish the trust that the reality gap between the virtually
simulated functional tests and the real world behavior is suffi-
ciently closed. Note that the field tests alone do not by them-
selves serve as a positive proof for the functional correctness
as the probability of experiencing difficult edge-cases is mini-
mal according to the RAND report cited in section 2.2 above.
This is why the in-depth analysis of the protocols of the field
tests and their comparison with the simulated behavior are the
most important outcome of the field test.

Based on the pre-certification and the confirmation of the
expectations by the assessment of the field test, the holistic
evaluation of the system against the seven defined dimensions
of trustworthiness is finished.

5 Discussion & Conclusion
In this work we have highlighted the need for a publicly
accepted certification procedure for digital pilots. We have
specifically advocated to create an admission certification that
is suitable to allow automated vehicles to public traffic with-
out safety driver in special restricted use-cases. For every
use-case a special assessment and individual tests might have
to be designed and eventually even special local traffic signs
have to be installed.

In order for such a process to work, we have discussed the
necessary testing dimensions and an overall testing scheme
that includes AI experts, scientists knowledgeable in the state
of the art of AI, whose duty is to intentionally challenge the
pilot under test with specific tests until those experts are con-
vinced of the trustworthiness of the device.
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